亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Leveraging Transformer Model to Predict Vehicle Trajectories in Congested Urban Traffic

计算机科学 杠杆(统计) 变压器 弹道 深度学习 人工智能 模拟 机器学习 工程类 物理 电压 天文 电气工程
作者
Yufei Xu,Yu Wang,Srinivas Peeta
出处
期刊:Transportation Research Record [SAGE]
卷期号:2677 (2): 898-909 被引量:2
标识
DOI:10.1177/03611981221109594
摘要

Accurate vehicle trajectory prediction enables safe, comfortable, and optimal proactive motion planning for connected and autonomous vehicles (CAVs). Because of rapid advances in learning techniques and increasing access to massive amounts of data, deep learning techniques have been applied to predict vehicle trajectories, especially the long short-term memory (LSTM) model. However, the accurate prediction of vehicle trajectories for congested urban traffic remains problematic, as existing LSTM models do not perform well. To address this gap, this paper proposes to leverage an emerging deep learning technique—transformer—and utilizes a recently released dataset (pNEUMA) for predicting vehicle trajectories in congested urban traffic. The proposed transformer model uses the self-attention mechanism, which helps to identify dependencies within the model inputs, to systematically determine the impacts of vehicular interactions on the target vehicle’s future trajectory. The pNEUMA dataset, which provides drone-based large-scale data of congested urban traffic, is processed to fit a typical trajectory prediction scenario, and used to train the transformer model. Numerical studies are conducted to analyze the effectiveness of the proposed modeling approach. A comparison of the proposed model with representative LSTM models highlights the advantages of leveraging the transformer model characteristics for the vehicle trajectory prediction of congested urban traffic. By contrast, existing LSTM models may suffice for the trajectory prediction of freeway traffic. The results also indicate that, unlike for vehicle trajectory prediction for freeway traffic, a longer time window of inputs does not guarantee better prediction performance for congested urban traffic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小段完成签到,获得积分10
1秒前
iii完成签到,获得积分10
2秒前
SevaC发布了新的文献求助10
3秒前
科研通AI2S应助天才小熊猫采纳,获得10
4秒前
5秒前
酷波er应助大猫喵喵喵采纳,获得10
5秒前
21秒前
单纯芹菜发布了新的文献求助10
24秒前
32秒前
34秒前
susu_完成签到 ,获得积分10
35秒前
36秒前
37秒前
spark810完成签到,获得积分0
42秒前
单纯芹菜完成签到,获得积分10
43秒前
大猫喵喵喵完成签到,获得积分10
44秒前
49秒前
云朵完成签到 ,获得积分20
51秒前
51秒前
采薇发布了新的文献求助10
52秒前
标致的问晴完成签到,获得积分10
53秒前
niuniu完成签到,获得积分10
55秒前
niuniu发布了新的文献求助10
57秒前
光亮如彤完成签到,获得积分10
1分钟前
1分钟前
Dani完成签到,获得积分10
1分钟前
1分钟前
景胜杰发布了新的文献求助10
1分钟前
cctv18应助研友_nEoEy8采纳,获得10
1分钟前
琥珀川完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
寻道图强应助科研通管家采纳,获得30
1分钟前
1分钟前
myf完成签到,获得积分10
1分钟前
CodeCraft应助落后的怀柔采纳,获得10
1分钟前
1分钟前
1分钟前
myf发布了新的文献求助10
1分钟前
张博发布了新的文献求助20
1分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244671
求助须知:如何正确求助?哪些是违规求助? 2888383
关于积分的说明 8252725
捐赠科研通 2556854
什么是DOI,文献DOI怎么找? 1385365
科研通“疑难数据库(出版商)”最低求助积分说明 650157
邀请新用户注册赠送积分活动 626234