Efficient RNN Models for IOT Intrusion Detection System

计算机科学 入侵检测系统 物联网 循环神经网络 人工智能 计算机安全 人工神经网络
作者
Rahma Jablaoui,Noureddine Liouane
标识
DOI:10.1109/iccad60883.2024.10553939
摘要

Due to the growing number of network devices, traffics and services, designing robust Intrusion Detection System (IDS) become a crucial need in the face of complex and various network attacks as a protective measure from hackers and cybercriminals. However, the traditional Machine Learning (ML) approach shows success in many research topics but with the increase in the amount of data and the diversification of network threats methods, it seems to lack reliability and accuracy. Therefore, considering a large amount of real-world cyber traffic, Deep Learning (DL) may be able to extract big data features more effectively. In this paper, we suggest an intrusion detection system for the Internet of Things (IoT) network based on Deep Learning to recognize various assault types for both binary and multiclass classification using two variants of Recurrent Neural Network (RNN) models long short-term memory (LSTM) and Bidirectional LSTM (BiLSTM). We have experimented the models with CSE-CIC-IDS2018, which is the newest comprehensive network traffic dataset. Accuracy, precision, recall, and F1 score are a few performance criteria where the suggested approach clearly excels. After comparison, we can infer that Bi-directional LSTM outperforms LSTM and other existing efforts in the literature. The accuracy of the experimental results was high, coming in at 98.62%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉从筠发布了新的文献求助10
1秒前
Alice完成签到,获得积分10
1秒前
情怀应助胡萝卜饼干采纳,获得10
1秒前
wnx001111发布了新的文献求助10
2秒前
wxyshare应助ABCD__采纳,获得10
2秒前
liz发布了新的文献求助20
2秒前
HH1202完成签到,获得积分10
3秒前
英俊安蕾完成签到,获得积分10
3秒前
valere完成签到 ,获得积分10
3秒前
3秒前
DF完成签到,获得积分10
3秒前
小小康康完成签到,获得积分10
3秒前
华仔应助123采纳,获得10
4秒前
JamesPei应助柳絮吹雪采纳,获得10
4秒前
4秒前
科研通AI6应助桥木有舟采纳,获得10
4秒前
沐浴清风发布了新的文献求助10
5秒前
言寺发布了新的文献求助30
5秒前
doddy完成签到,获得积分20
6秒前
bkagyin应助lll采纳,获得10
7秒前
7秒前
雷媛完成签到,获得积分10
7秒前
zt完成签到,获得积分20
8秒前
小艾完成签到,获得积分10
8秒前
LIUC完成签到 ,获得积分20
8秒前
科研通AI6应助0227Y采纳,获得10
9秒前
子桑完成签到,获得积分10
9秒前
晴朗完成签到,获得积分10
10秒前
10秒前
P16发布了新的文献求助10
10秒前
斯文如娆发布了新的文献求助10
10秒前
10秒前
11秒前
刘富贵发布了新的文献求助10
11秒前
Lysine发布了新的文献求助10
11秒前
FashionBoy应助wisliudj采纳,获得10
12秒前
13秒前
传奇3应助wjh采纳,获得10
13秒前
Lucas应助乔1采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5013461
求助须知:如何正确求助?哪些是违规求助? 4254548
关于积分的说明 13258498
捐赠科研通 4057614
什么是DOI,文献DOI怎么找? 2219343
邀请新用户注册赠送积分活动 1228859
关于科研通互助平台的介绍 1151416