Efficient RNN Models for IOT Intrusion Detection System

计算机科学 入侵检测系统 物联网 循环神经网络 人工智能 计算机安全 人工神经网络
作者
Rahma Jablaoui,Noureddine Liouane
标识
DOI:10.1109/iccad60883.2024.10553939
摘要

Due to the growing number of network devices, traffics and services, designing robust Intrusion Detection System (IDS) become a crucial need in the face of complex and various network attacks as a protective measure from hackers and cybercriminals. However, the traditional Machine Learning (ML) approach shows success in many research topics but with the increase in the amount of data and the diversification of network threats methods, it seems to lack reliability and accuracy. Therefore, considering a large amount of real-world cyber traffic, Deep Learning (DL) may be able to extract big data features more effectively. In this paper, we suggest an intrusion detection system for the Internet of Things (IoT) network based on Deep Learning to recognize various assault types for both binary and multiclass classification using two variants of Recurrent Neural Network (RNN) models long short-term memory (LSTM) and Bidirectional LSTM (BiLSTM). We have experimented the models with CSE-CIC-IDS2018, which is the newest comprehensive network traffic dataset. Accuracy, precision, recall, and F1 score are a few performance criteria where the suggested approach clearly excels. After comparison, we can infer that Bi-directional LSTM outperforms LSTM and other existing efforts in the literature. The accuracy of the experimental results was high, coming in at 98.62%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
huan发布了新的文献求助10
1秒前
2秒前
heihei完成签到,获得积分10
2秒前
打打应助gy采纳,获得10
2秒前
2秒前
梦里花落声应助976240952采纳,获得10
2秒前
3秒前
3秒前
hpc完成签到,获得积分10
3秒前
3秒前
Orange应助林子采纳,获得10
4秒前
西西完成签到,获得积分10
4秒前
4秒前
hym发布了新的文献求助10
4秒前
落后青筠完成签到 ,获得积分10
5秒前
5秒前
JC完成签到,获得积分10
5秒前
Ava应助想养一只猫采纳,获得10
5秒前
zjq完成签到,获得积分20
5秒前
gxyyyy发布了新的文献求助10
6秒前
6秒前
6秒前
bkagyin应助Young采纳,获得10
7秒前
共享精神应助了吟采纳,获得10
7秒前
7秒前
tfr06完成签到,获得积分10
7秒前
8秒前
c7完成签到,获得积分10
8秒前
a雪橙完成签到 ,获得积分10
8秒前
8秒前
王静发布了新的文献求助10
9秒前
隐形曼青应助Tang125采纳,获得10
10秒前
星辰大海应助ChuangyangLi采纳,获得10
10秒前
施宇宙完成签到,获得积分10
10秒前
nono完成签到,获得积分10
10秒前
hym完成签到,获得积分10
11秒前
11秒前
祺玄发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260499
求助须知:如何正确求助?哪些是违规求助? 4421947
关于积分的说明 13764660
捐赠科研通 4296098
什么是DOI,文献DOI怎么找? 2357222
邀请新用户注册赠送积分活动 1353594
关于科研通互助平台的介绍 1314874