亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Efficient RNN Models for IOT Intrusion Detection System

计算机科学 入侵检测系统 物联网 循环神经网络 人工智能 计算机安全 人工神经网络
作者
Rahma Jablaoui,Noureddine Liouane
标识
DOI:10.1109/iccad60883.2024.10553939
摘要

Due to the growing number of network devices, traffics and services, designing robust Intrusion Detection System (IDS) become a crucial need in the face of complex and various network attacks as a protective measure from hackers and cybercriminals. However, the traditional Machine Learning (ML) approach shows success in many research topics but with the increase in the amount of data and the diversification of network threats methods, it seems to lack reliability and accuracy. Therefore, considering a large amount of real-world cyber traffic, Deep Learning (DL) may be able to extract big data features more effectively. In this paper, we suggest an intrusion detection system for the Internet of Things (IoT) network based on Deep Learning to recognize various assault types for both binary and multiclass classification using two variants of Recurrent Neural Network (RNN) models long short-term memory (LSTM) and Bidirectional LSTM (BiLSTM). We have experimented the models with CSE-CIC-IDS2018, which is the newest comprehensive network traffic dataset. Accuracy, precision, recall, and F1 score are a few performance criteria where the suggested approach clearly excels. After comparison, we can infer that Bi-directional LSTM outperforms LSTM and other existing efforts in the literature. The accuracy of the experimental results was high, coming in at 98.62%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
5秒前
9秒前
盛夏如花发布了新的文献求助10
10秒前
12秒前
藏锋完成签到 ,获得积分10
23秒前
Danta发布了新的文献求助10
23秒前
李健应助忧心的迎天采纳,获得10
26秒前
CodeCraft应助科研通管家采纳,获得10
31秒前
昔年若许完成签到,获得积分10
41秒前
Hello应助小羊咩咩采纳,获得10
44秒前
CodeCraft应助belolit采纳,获得10
50秒前
身法马可波罗完成签到 ,获得积分10
52秒前
TsuKe完成签到,获得积分10
53秒前
周以筠完成签到 ,获得积分10
56秒前
木土完成签到 ,获得积分10
56秒前
1分钟前
司空天德发布了新的文献求助10
1分钟前
张安然发布了新的文献求助10
1分钟前
张安然完成签到,获得积分10
1分钟前
1分钟前
晨曦呢完成签到 ,获得积分10
1分钟前
小枣完成签到 ,获得积分10
1分钟前
1分钟前
YuZhang完成签到 ,获得积分10
1分钟前
1分钟前
温柔的水卉完成签到,获得积分10
1分钟前
憨憨的跳跳完成签到 ,获得积分10
1分钟前
belolit发布了新的文献求助10
1分钟前
wang@163.com完成签到,获得积分20
1分钟前
三两白菜完成签到,获得积分10
1分钟前
今后应助flyingdodoro采纳,获得10
1分钟前
sidashu完成签到,获得积分10
1分钟前
一个大花瓶完成签到 ,获得积分10
1分钟前
1分钟前
Bin_Liu发布了新的文献求助10
2分钟前
陈陈完成签到,获得积分10
2分钟前
cyt完成签到,获得积分10
2分钟前
sss完成签到 ,获得积分10
2分钟前
科目三应助cyt采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634616
求助须知:如何正确求助?哪些是违规求助? 4731648
关于积分的说明 14988748
捐赠科研通 4792317
什么是DOI,文献DOI怎么找? 2559479
邀请新用户注册赠送积分活动 1519764
关于科研通互助平台的介绍 1479903