Efficient RNN Models for IOT Intrusion Detection System

计算机科学 入侵检测系统 物联网 循环神经网络 人工智能 计算机安全 人工神经网络
作者
Rahma Jablaoui,Noureddine Liouane
标识
DOI:10.1109/iccad60883.2024.10553939
摘要

Due to the growing number of network devices, traffics and services, designing robust Intrusion Detection System (IDS) become a crucial need in the face of complex and various network attacks as a protective measure from hackers and cybercriminals. However, the traditional Machine Learning (ML) approach shows success in many research topics but with the increase in the amount of data and the diversification of network threats methods, it seems to lack reliability and accuracy. Therefore, considering a large amount of real-world cyber traffic, Deep Learning (DL) may be able to extract big data features more effectively. In this paper, we suggest an intrusion detection system for the Internet of Things (IoT) network based on Deep Learning to recognize various assault types for both binary and multiclass classification using two variants of Recurrent Neural Network (RNN) models long short-term memory (LSTM) and Bidirectional LSTM (BiLSTM). We have experimented the models with CSE-CIC-IDS2018, which is the newest comprehensive network traffic dataset. Accuracy, precision, recall, and F1 score are a few performance criteria where the suggested approach clearly excels. After comparison, we can infer that Bi-directional LSTM outperforms LSTM and other existing efforts in the literature. The accuracy of the experimental results was high, coming in at 98.62%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助白桦林泪采纳,获得10
刚刚
鸣笛应助gr采纳,获得30
刚刚
closeboy完成签到 ,获得积分10
1秒前
1秒前
Ankher发布了新的文献求助30
1秒前
慕青应助楼不正采纳,获得20
1秒前
yy发布了新的文献求助30
2秒前
优秀发布了新的文献求助20
2秒前
剑与芳华完成签到 ,获得积分10
2秒前
希望天下0贩的0应助sandy采纳,获得20
2秒前
3秒前
3秒前
生物民工完成签到,获得积分10
4秒前
5秒前
早睡早起发布了新的文献求助30
5秒前
dhh完成签到,获得积分10
5秒前
烟花应助Pacer采纳,获得10
5秒前
Hello完成签到,获得积分10
6秒前
彩虹大侠完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
三石盟约完成签到,获得积分0
9秒前
Ankher完成签到,获得积分0
9秒前
9秒前
9秒前
CodeCraft应助rocket采纳,获得10
9秒前
悠雯发布了新的文献求助10
10秒前
林林完成签到 ,获得积分10
10秒前
Celeste_J发布了新的文献求助10
10秒前
WAO发布了新的文献求助10
11秒前
李爱国应助哈利波特大采纳,获得10
11秒前
成就的外套完成签到,获得积分10
11秒前
11秒前
wanci应助机智寒珊采纳,获得10
12秒前
chen完成签到,获得积分10
12秒前
13秒前
13秒前
大个应助Wonder采纳,获得10
13秒前
Raymond应助小少采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600811
求助须知:如何正确求助?哪些是违规求助? 4010804
关于积分的说明 12417574
捐赠科研通 3690690
什么是DOI,文献DOI怎么找? 2034531
邀请新用户注册赠送积分活动 1067930
科研通“疑难数据库(出版商)”最低求助积分说明 952602