Efficient RNN Models for IOT Intrusion Detection System

计算机科学 入侵检测系统 物联网 循环神经网络 人工智能 计算机安全 人工神经网络
作者
Rahma Jablaoui,Noureddine Liouane
标识
DOI:10.1109/iccad60883.2024.10553939
摘要

Due to the growing number of network devices, traffics and services, designing robust Intrusion Detection System (IDS) become a crucial need in the face of complex and various network attacks as a protective measure from hackers and cybercriminals. However, the traditional Machine Learning (ML) approach shows success in many research topics but with the increase in the amount of data and the diversification of network threats methods, it seems to lack reliability and accuracy. Therefore, considering a large amount of real-world cyber traffic, Deep Learning (DL) may be able to extract big data features more effectively. In this paper, we suggest an intrusion detection system for the Internet of Things (IoT) network based on Deep Learning to recognize various assault types for both binary and multiclass classification using two variants of Recurrent Neural Network (RNN) models long short-term memory (LSTM) and Bidirectional LSTM (BiLSTM). We have experimented the models with CSE-CIC-IDS2018, which is the newest comprehensive network traffic dataset. Accuracy, precision, recall, and F1 score are a few performance criteria where the suggested approach clearly excels. After comparison, we can infer that Bi-directional LSTM outperforms LSTM and other existing efforts in the literature. The accuracy of the experimental results was high, coming in at 98.62%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助zxh采纳,获得10
刚刚
苏yj完成签到,获得积分10
1秒前
2秒前
6秒前
张文静发布了新的文献求助10
6秒前
qwq发布了新的文献求助10
8秒前
优秀念柏完成签到,获得积分10
8秒前
舒服的醉卉完成签到 ,获得积分10
9秒前
云帆发布了新的文献求助10
9秒前
小嘴巴发布了新的文献求助20
9秒前
huanir99发布了新的文献求助10
9秒前
10秒前
onmyway发布了新的文献求助10
10秒前
悦耳皮带完成签到,获得积分10
11秒前
12秒前
仲夏完成签到,获得积分10
12秒前
zxh发布了新的文献求助10
12秒前
Zy发布了新的文献求助30
16秒前
我是老大应助科研通管家采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
子车茗应助科研通管家采纳,获得20
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
桐桐应助科研通管家采纳,获得10
17秒前
子车茗应助科研通管家采纳,获得20
17秒前
子车茗应助科研通管家采纳,获得20
17秒前
CipherSage应助科研通管家采纳,获得10
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得100
17秒前
18秒前
18秒前
深情安青应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得30
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
大龙哥886应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560490
求助须知:如何正确求助?哪些是违规求助? 4645747
关于积分的说明 14676028
捐赠科研通 4586936
什么是DOI,文献DOI怎么找? 2516635
邀请新用户注册赠送积分活动 1490182
关于科研通互助平台的介绍 1461055