Encrypted malicious traffic detection based on natural language processing and deep learning

计算机科学 加密 人工智能 深度学习 计算机安全 自然(考古学) 自然语言处理 考古 历史
作者
Xiaodong Zang,Tongliang Wang,Xinchang Zhang,Jian Gong,Peng Gao,Guowei Zhang
出处
期刊:Computer Networks [Elsevier]
卷期号:250: 110598-110598
标识
DOI:10.1016/j.comnet.2024.110598
摘要

The focus on privacy protection has brought much-encrypted network traffic. However, attackers always abuse traffic encryption to conceal malicious behaviors. Although researchers have proposed several enlightening detection methods, they must enhance the generalization ability or improve detection performance. Our inspiration is that the packet header fields, as do the underlying grammatical rules for constructing sentences, have a strict order. We consider the original packet as text and devise a robust approach with natural language processing and a deep learning model to improve the generalization ability and detection performance. We capture the critical keywords as characteristic representations of the traffic and design an adaptive domain generalization algorithm with a new loss function. It is robust against various datasets by generating more malicious samples to augment the minority of malicious samples. Simultaneously, we design an efficient feature selection algorithm, which obtains an optimal feature subset and reduces feature dimensions by 75.3%. To evaluate our work, we conducted extensive experiments with open-source datasets (CICIDS 2017, CICDDoS 2019, and USTC-TFC 2016), the synthetic dataset from IoT-23, and Internet backbone traffic (CERNET). Experimental results demonstrate that our proposal improves detection accuracy by up to 22.8% compared to others not using domain generalization algorithms and achieves an average detection latency of 0.67 s in the backbone. Besides, our work applies to the Industrial Internet of Things (IIoT) environment. It can be deployed at edge nodes to provide network security support for IIoT devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
choubao完成签到,获得积分20
2秒前
田様应助leo_twli采纳,获得10
2秒前
甜甜完成签到,获得积分10
3秒前
没有逗完成签到,获得积分10
3秒前
帕克发布了新的文献求助10
5秒前
smile~发布了新的文献求助10
6秒前
茜134完成签到,获得积分10
6秒前
6秒前
周凡淇发布了新的文献求助10
6秒前
优秀的往事完成签到,获得积分10
7秒前
善学以致用应助米老鼠de采纳,获得10
8秒前
深情的一曲完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
10秒前
10秒前
congjia完成签到,获得积分10
10秒前
小蘑菇应助小可爱采纳,获得10
11秒前
凌忆文完成签到 ,获得积分0
12秒前
打打应助白天亮采纳,获得10
12秒前
12秒前
苏苏阿苏完成签到,获得积分10
13秒前
13秒前
yoga发布了新的文献求助10
14秒前
西西发布了新的文献求助10
15秒前
无足鸟应助研友_Z1eelZ采纳,获得10
15秒前
少年发布了新的文献求助10
15秒前
红豆发布了新的文献求助10
16秒前
Remote发布了新的文献求助10
17秒前
白白完成签到,获得积分10
19秒前
19秒前
19秒前
19秒前
yidong发布了新的文献求助10
21秒前
喵喵发文章啦完成签到 ,获得积分10
21秒前
小可爱发布了新的文献求助10
22秒前
Singularity应助aaa采纳,获得10
22秒前
23秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124786
求助须知:如何正确求助?哪些是违规求助? 2775057
关于积分的说明 7725364
捐赠科研通 2430615
什么是DOI,文献DOI怎么找? 1291245
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323