Cascaded Adaptive Graph Representation Learning for Image Copy-Move Forgery Detection

计算机科学 人工智能 图形 代表(政治) 计算机视觉 图像(数学) 模式识别(心理学) 理论计算机科学 政治学 政治 法学
作者
Yuanman Li,Lanhao Ye,Haokun Cao,Wei Wang,Zhongyun Hua
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
标识
DOI:10.1145/3669905
摘要

In the realm of image security, there has been a burgeoning interest in harnessing deep learning techniques for the detection of digital image copy-move forgeries, resulting in promising outcomes. The generation process of such forgeries results in a distinctive topological structure among patches, and collaborative modeling based on these underlying topologies proves instrumental in enhancing the discrimination of ambiguous pixels. Despite the attention received, existing deep learning models predominantly rely on convolutional neural networks (CNNs), falling short in adequately capturing correlations among distant patches. This limitation impedes the seamless propagation of information and collaborative learning across related patches. To address this gap, our work introduces an innovative framework for image copy-move forensics rooted in graph representation learning. Initially, we introduce an adaptive graph learning approach to foster collaboration among related patches, dynamically learning the inherent topology of patches. The devised approach excels in promoting efficient information flow among related patches, encompassing both short-range and long-range correlations. Additionally, we formulate a cascaded graph learning framework, progressively refining patch representations and disseminating information to broader correlated patches based on their updated topologies. Finally, we propose a hierarchical cross-attention mechanism facilitating the exchange of information between the cascaded graph learning branch and a dedicated forgery detection branch. This equips our method with the capability to jointly grasp the homology of copy-move correspondences and identify inconsistencies between the target region and the background. Comprehensive experimental results validate the superiority of our proposed scheme, providing a robust solution to security challenges posed by digital image manipulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
骄傲慕尼黑完成签到,获得积分10
2秒前
devilfish13发布了新的文献求助10
3秒前
cq_2完成签到,获得积分0
4秒前
JrPaleo101发布了新的文献求助100
5秒前
LeuinPonsgi完成签到,获得积分10
6秒前
土豆晴完成签到 ,获得积分10
6秒前
105完成签到 ,获得积分10
11秒前
11秒前
sun完成签到,获得积分10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
剑K完成签到,获得积分10
17秒前
22秒前
24秒前
愉快道之完成签到 ,获得积分10
25秒前
个性的汲完成签到,获得积分10
30秒前
溯鸣完成签到 ,获得积分10
31秒前
d_fishier完成签到 ,获得积分10
33秒前
影像大侠完成签到,获得积分10
34秒前
fd163c应助个性的汲采纳,获得10
35秒前
kirisaki完成签到 ,获得积分10
41秒前
Mt完成签到,获得积分10
44秒前
完美世界应助orchid采纳,获得10
44秒前
研友Bn完成签到 ,获得积分10
45秒前
诗蕊完成签到 ,获得积分0
48秒前
2025顺顺利利完成签到 ,获得积分10
50秒前
agent完成签到 ,获得积分10
52秒前
53秒前
孝顺的觅风完成签到 ,获得积分10
54秒前
阿白完成签到 ,获得积分10
57秒前
HLT完成签到 ,获得积分10
58秒前
1分钟前
五月完成签到 ,获得积分10
1分钟前
章鱼完成签到,获得积分10
1分钟前
Ruuo616完成签到 ,获得积分10
1分钟前
orchid发布了新的文献求助10
1分钟前
木头完成签到,获得积分10
1分钟前
wxyinhefeng完成签到 ,获得积分10
1分钟前
兔兔完成签到 ,获得积分10
1分钟前
talpionchen完成签到,获得积分10
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733477
求助须知:如何正确求助?哪些是违规求助? 3277631
关于积分的说明 10003612
捐赠科研通 2993682
什么是DOI,文献DOI怎么找? 1642790
邀请新用户注册赠送积分活动 780644
科研通“疑难数据库(出版商)”最低求助积分说明 748944