FRNet: An MCS Framework for Efficient and Secure Data Sensing and Privacy Protection in IoVs

计算机科学 上传 任务(项目管理) 过程(计算) 信息隐私 计算机安全 万维网 管理 经济 操作系统
作者
Zhihua Wang,Zeminghui Li,Zhenyu Li,Yingheng Xu,Xiaolong Yang,F. Z. Qi,Hongyong Jia
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (18): 16343-16357 被引量:7
标识
DOI:10.1109/jiot.2023.3267782
摘要

Mobile crowdsensing (MCS) is a kind of sensing mode based on mobile nodes, which provides a cost-effective solution for data collection of urban sensing. However, when participants collect and upload sensing data in MCS system, they often overlap in time and space. Therefore, MCS system obtains a lot of redundant data, and ultimately cannot meet the MCS task requirements. Meanwhile, existing schemes cannot realize the dynamic allocation of sensing tasks and the dynamic selection of task participants. In addition, task participants will generate and transfer a large amount of sensitive information, such as location, identity, personal habits, etc., in the process of uploading sensing data and completing sensing tasks, thus leading to the risk of privacy leakage. Presently, many schemes use federated learning and other technologies to protect privacy, but there are still challenges that adversaries can extract parameters information during model training. Therefore, in order to the above problems, this article puts forward an efficient and secure MCS framework FRNet in Internet of Vehicles (IoVs). Specifically, MCS task completion is described as a two-phase process. This article not only proposes a method to dynamically select candidate participants in MCS vehicular networks to collect high-quality sensing data, but also establishes a data privacy protection mechanism for the whole process of model training in federated learning. Finally, the effectiveness of FRNet is verified through security analysis and experimental evaluation. Experimental results show that FRNet can effectively improve the quality of sensing data, maximize TCV, and enhance data privacy protection ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
you发布了新的文献求助10
刚刚
1秒前
苹果书兰完成签到,获得积分10
2秒前
啦啦啦发布了新的文献求助10
3秒前
善学以致用应助sam采纳,获得10
3秒前
sunshine完成签到,获得积分10
3秒前
5秒前
cqrao完成签到,获得积分10
8秒前
you完成签到,获得积分10
9秒前
深情安青应助快乐的水瑶采纳,获得10
9秒前
11秒前
13秒前
13秒前
猪幺妖完成签到 ,获得积分10
14秒前
sun完成签到,获得积分20
15秒前
16秒前
敏哇哇哇完成签到,获得积分10
17秒前
sun发布了新的文献求助10
18秒前
18秒前
18秒前
火星上滑板完成签到,获得积分10
21秒前
22秒前
23秒前
24秒前
科研通AI5应助Newky采纳,获得10
25秒前
sam发布了新的文献求助10
27秒前
稗子酿的酒完成签到,获得积分10
27秒前
veblem完成签到,获得积分10
27秒前
研友_VZG7GZ应助cardiomyocytes采纳,获得10
31秒前
35秒前
lxl完成签到,获得积分10
36秒前
38秒前
40秒前
40秒前
港岛妹妹发布了新的文献求助10
40秒前
41秒前
Dotson完成签到 ,获得积分10
42秒前
科研通AI5应助杜aaaaaa采纳,获得10
43秒前
nnnick完成签到,获得积分0
44秒前
45秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670919
求助须知:如何正确求助?哪些是违规求助? 3227795
关于积分的说明 9777243
捐赠科研通 2937977
什么是DOI,文献DOI怎么找? 1609718
邀请新用户注册赠送积分活动 760446
科研通“疑难数据库(出版商)”最低求助积分说明 735959