神经形态工程学
MNIST数据库
冯·诺依曼建筑
晶体管
非易失性存储器
材料科学
计算机科学
计算机体系结构
内存处理
高效能源利用
铁电性
场效应晶体管
电子工程
深度学习
电压
人工神经网络
光电子学
电气工程
人工智能
工程类
搜索引擎
情报检索
按示例查询
电介质
Web搜索查询
操作系统
作者
Heng Xiang,Yu‐Chieh Chien,Lingqi Li,Haofei Zheng,Sifan Li,Ngoc Thanh Duong,Yufei Shi,Kah‐Wee Ang
标识
DOI:10.1002/adfm.202304657
摘要
Abstract In‐memory computing, particularly neuromorphic computing, has emerged as a promising solution to overcome the energy and time‐consuming challenges associated with the von Neumann architecture. The ferroelectric field‐effect transistor (FeFET) technology, with its fast and energy‐efficient switching and nonvolatile memory, is a potential candidate for enabling both computing and memory within a single transistor. In this study, the capabilities of an integrated ferroelectric HfO 2 and 2D MoS 2 channel FeFET in achieving high‐performance 4‐bit per cell memory with low variation and power consumption synapses, while retaining the ability to implement diverse learning rules, are demonstrated. Notably, this device accurately recognizes MNIST handwritten digits with over 94% accuracy using online training mode. These results highlight the potential of FeFET‐based in‐memory computing for future neuromorphic computing applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI