GraphSleepFormer: A multi-modal graph neural network for sleep staging in OSA patients

计算机科学 中心性 图形 睡眠阶段 多导睡眠图 人工智能 编码(社会科学) 编码(内存) 邻接矩阵 人工神经网络 机器学习 数据挖掘 理论计算机科学 医学 脑电图 统计 数学 组合数学 精神科
作者
Chen Wang,Xiuquan Jiang,Chengyan Lv,Qi Meng,Pengcheng Zhao,Yan Di,Chao Feng,Fangzhou Xu,Shanshan Lu,Tzyy‐Ping Jung,Jiancai Leng
出处
期刊:Journal of Neural Engineering [IOP Publishing]
标识
DOI:10.1088/1741-2552/adb996
摘要

Abstract Objective. Obstructive sleep apnea (OSA) is a prevalent sleep disorder. Accurate sleep staging is one of the prerequisites in the study of sleep-related disorders and the evaluation of sleep quality. We introduce a novel GraphSleepFormer (GSF) network designed to effectively capture global dependencies and node characteristics in graph-structured data. Approach. The network incorporates centrality coding and spatial coding into its architecture. It employs adaptive learning of adjacency matrices for spatial encoding between channels located on the head, thereby encoding graph structure information to enhance the model's representation and understanding of spatial relationships. Centrality encoding integrates the degree matrix into node features, assigning varying degrees of attention to different channels. Ablation experiments demonstrate the effectiveness of these encoding methods. The Shapley Additive Explanations (SHAP) method was employed to evaluate the contribution of each channel in sleep staging, highlighting the necessity of using multimodal data. Main results. We trained our model on overnight polysomnography data collected from 28 OSA patients in a clinical setting and achieved an overall Accuracy of 80.10%. GSF achieved performance comparable to state-of-the-art methods on two subsets of the ISRUC database. Significance. The GSF Accurately identifies sleep periods, providing a critical basis for diagnosing and treating OSA, thereby contributing to advancements in sleep medicine.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛仔很忙完成签到 ,获得积分10
刚刚
mtf完成签到,获得积分10
1秒前
2秒前
豆腐kkkkk发布了新的文献求助10
3秒前
Xiaoxiao应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
Leif应助科研通管家采纳,获得20
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
dawei完成签到,获得积分20
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
maox1aoxin应助科研通管家采纳,获得50
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
万泉部诗人完成签到,获得积分10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
小蘑菇应助徐若楠采纳,获得10
4秒前
yaomada发布了新的文献求助80
5秒前
derder完成签到,获得积分10
5秒前
你的完成签到 ,获得积分10
6秒前
6秒前
情怀应助quan采纳,获得10
7秒前
zqh完成签到,获得积分20
9秒前
9秒前
林林子发布了新的文献求助10
9秒前
徐若楠完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
10秒前
一只咸鱼发布了新的文献求助10
11秒前
11秒前
眯眯眼的雪莲完成签到 ,获得积分10
11秒前
bkagyin应助顿手把其采纳,获得20
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3525919
求助须知:如何正确求助?哪些是违规求助? 3106412
关于积分的说明 9280139
捐赠科研通 2803992
什么是DOI,文献DOI怎么找? 1539144
邀请新用户注册赠送积分活动 716481
科研通“疑难数据库(出版商)”最低求助积分说明 709454