Lipid droplets as substrates for protein phase separation

脂质双层 成核 脂滴 化学 生物物理学 相(物质) 化学物理 脂质双层相行为 蛋白质聚集 脂质微区 生物化学 有机化学 生物
作者
Advika Kamatar,Jack P.K. Bravo,Yuan Feng,Liping Wang,Eileen M. Lafer,David W. Taylor,Jeanne C. Stachowiak,Sapun H. Parekh
标识
DOI:10.1101/2023.06.28.546804
摘要

Abstract Membrane-associated protein phase separation plays critical roles in cell biology, driving essential cellular phenomena from immune signaling to membrane traffic. Importantly, by restricting diffusion to a two-dimensional surface, lipid bilayers can nucleate phase separation at far lower concentrations compared to those required for phase separation in solution. How might other intracellular lipid substrates, such as lipid droplets, contribute to nucleation of phase separation? Distinct from bilayer membranes, lipid droplets consist of a phospholipid monolayer surrounding a core of neutral lipids, and they are energy storage organelles that protect cells from lipotoxicity and oxidative stress. Here, we show that intrinsically disordered proteins can undergo phase separation on the surface of synthetic and cell-derived lipid droplets. Specifically, we find that model disordered domains, FUS LC and LAF1-RGG, separate into protein-rich and protein-depleted phases on the surfaces of lipid droplets. Owing to the hydrophobic nature of interactions between FUS LC proteins, increasing ionic strength drives an increase in its phase separation on droplet surfaces. The opposite is true for LAF1-RGG, owing to the electrostatic nature of its interprotein interactions. In both cases, protein-rich phases on the surfaces of synthetic and cell-derived lipid droplets demonstrate molecular mobility indicative of a liquid-like state. Our results show that lipid droplets can nucleate protein condensates, suggesting that protein phase separation could be key in organizing biological processes involving lipid droplets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
婉儿完成签到,获得积分10
刚刚
duran完成签到,获得积分10
刚刚
麋鹿完成签到,获得积分10
刚刚
刚刚
accept完成签到,获得积分20
1秒前
打打应助挺喜欢你采纳,获得10
1秒前
59完成签到,获得积分10
1秒前
1秒前
lgh发布了新的文献求助10
3秒前
瑞仔发布了新的文献求助10
3秒前
4秒前
顾矜应助GK采纳,获得10
4秒前
4秒前
4秒前
5秒前
失眠剑完成签到,获得积分10
5秒前
6秒前
6秒前
李健应助xuxingjie采纳,获得10
7秒前
7秒前
accept发布了新的文献求助10
7秒前
慕青应助yidezeng采纳,获得10
8秒前
8秒前
鱼鱼发布了新的文献求助10
9秒前
xiezizai发布了新的文献求助10
10秒前
LIUJIE完成签到,获得积分10
11秒前
小羊完成签到,获得积分10
11秒前
外向蜡烛完成签到 ,获得积分10
11秒前
沈星回关注了科研通微信公众号
11秒前
Daisypharma发布了新的文献求助10
11秒前
共享精神应助佐佐木淳平采纳,获得10
14秒前
田里一把叉完成签到,获得积分20
14秒前
14秒前
14秒前
15秒前
15秒前
xiezizai完成签到,获得积分10
16秒前
16秒前
18秒前
张嘟嘟发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160338
求助须知:如何正确求助?哪些是违规求助? 2811485
关于积分的说明 7892612
捐赠科研通 2470499
什么是DOI,文献DOI怎么找? 1315589
科研通“疑难数据库(出版商)”最低求助积分说明 630884
版权声明 602038