脂质双层
成核
脂滴
化学
生物物理学
相(物质)
化学物理
脂质双层相行为
膜
蛋白质聚集
脂质微区
生物化学
有机化学
生物
作者
Advika Kamatar,Jack P.K. Bravo,Yuan Feng,Liping Wang,Eileen M. Lafer,David W. Taylor,Jeanne C. Stachowiak,Sapun H. Parekh
标识
DOI:10.1101/2023.06.28.546804
摘要
Abstract Membrane-associated protein phase separation plays critical roles in cell biology, driving essential cellular phenomena from immune signaling to membrane traffic. Importantly, by restricting diffusion to a two-dimensional surface, lipid bilayers can nucleate phase separation at far lower concentrations compared to those required for phase separation in solution. How might other intracellular lipid substrates, such as lipid droplets, contribute to nucleation of phase separation? Distinct from bilayer membranes, lipid droplets consist of a phospholipid monolayer surrounding a core of neutral lipids, and they are energy storage organelles that protect cells from lipotoxicity and oxidative stress. Here, we show that intrinsically disordered proteins can undergo phase separation on the surface of synthetic and cell-derived lipid droplets. Specifically, we find that model disordered domains, FUS LC and LAF1-RGG, separate into protein-rich and protein-depleted phases on the surfaces of lipid droplets. Owing to the hydrophobic nature of interactions between FUS LC proteins, increasing ionic strength drives an increase in its phase separation on droplet surfaces. The opposite is true for LAF1-RGG, owing to the electrostatic nature of its interprotein interactions. In both cases, protein-rich phases on the surfaces of synthetic and cell-derived lipid droplets demonstrate molecular mobility indicative of a liquid-like state. Our results show that lipid droplets can nucleate protein condensates, suggesting that protein phase separation could be key in organizing biological processes involving lipid droplets.
科研通智能强力驱动
Strongly Powered by AbleSci AI