PDTDAHN: Predicting Drug-Target-Disease Associations using a Heterogeneous Network

药品 疾病 药物靶点 计算机科学 计算生物学 医学 药理学 内科学 生物
作者
Lei Chen,Jingdong Li
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:20 被引量:2
标识
DOI:10.2174/0115748936359702250120114240
摘要

Background: Disease is a major threat to life, and extensive efforts have been made over the past centuries to develop effective treatments. Identifying drug-disease and disease-target associations is crucial for therapeutic advancements, whereas drug-target associations facilitate the design of more effective treatment strategies. However, traditional experimental approaches for identifying these associations are costly and time-consuming. Numerous computational models have been developed to predict drug-target, drug-disease, and disease-target associations. However, these models are designed individually and cannot directly predict drug-target-disease associations, which involve interconnections among drugs, targets, and diseases. Such triple associations provide deeper insights into disease mechanisms and therapeutic interventions by capturing high-order associations. Objective: This study proposes a computational model named PDTDAHN to predict drug-targetdisease triple associations. Method: Six association types retrieved from public databases are used to construct a heterogeneous network comprising drugs, targets, and diseases. The network embedding algorithm Mashup is applied to extract features for drugs, targets, and diseases, which are then combined to represent each drug-target-disease association. The classification model is trained using LightGBM. Results: Cross-validation on eight datasets demonstrates the high performance of PDTDAHN, with AUROC and AUPR exceeding 0.9. This model outperforms previous models based on pairwise association predictions. Conclusion: The proposed model effectively predicts drug-target-disease triple associations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壮观语堂完成签到,获得积分10
1秒前
时光完成签到,获得积分10
1秒前
zt发布了新的文献求助10
1秒前
2秒前
加油科研发布了新的文献求助10
2秒前
麻薯蛋挞发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
帅的人完成签到,获得积分10
3秒前
ZHY2023发布了新的文献求助10
3秒前
椰奶椰奶发布了新的文献求助10
3秒前
5秒前
jeanne发布了新的文献求助30
6秒前
songmengshi发布了新的文献求助10
7秒前
闫什发布了新的文献求助10
7秒前
tongtongtong发布了新的文献求助10
7秒前
加菲完成签到,获得积分20
8秒前
盐水z完成签到,获得积分10
8秒前
9秒前
BowieHuang应助smalldesk采纳,获得10
10秒前
11秒前
Hello应助高雅和恬静采纳,获得10
12秒前
tsn发布了新的文献求助10
12秒前
科研百晓生完成签到 ,获得积分10
12秒前
12秒前
13秒前
14秒前
15秒前
15秒前
sugar0831完成签到,获得积分20
15秒前
16秒前
拿抓抓拿发布了新的文献求助10
16秒前
江楠完成签到 ,获得积分10
16秒前
tongtongtong完成签到,获得积分10
16秒前
17秒前
17秒前
源缘发布了新的文献求助10
17秒前
TCB发布了新的文献求助10
18秒前
开心发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588912
求助须知:如何正确求助?哪些是违规求助? 4671732
关于积分的说明 14789236
捐赠科研通 4626741
什么是DOI,文献DOI怎么找? 2532004
邀请新用户注册赠送积分活动 1500577
关于科研通互助平台的介绍 1468354