PDTDAHN: Predicting Drug-Target-Disease Associations using a Heterogeneous Network

药品 疾病 药物靶点 计算机科学 计算生物学 医学 药理学 内科学 生物
作者
Lei Chen,Jingdong Li
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:20 被引量:2
标识
DOI:10.2174/0115748936359702250120114240
摘要

Background: Disease is a major threat to life, and extensive efforts have been made over the past centuries to develop effective treatments. Identifying drug-disease and disease-target associations is crucial for therapeutic advancements, whereas drug-target associations facilitate the design of more effective treatment strategies. However, traditional experimental approaches for identifying these associations are costly and time-consuming. Numerous computational models have been developed to predict drug-target, drug-disease, and disease-target associations. However, these models are designed individually and cannot directly predict drug-target-disease associations, which involve interconnections among drugs, targets, and diseases. Such triple associations provide deeper insights into disease mechanisms and therapeutic interventions by capturing high-order associations. Objective: This study proposes a computational model named PDTDAHN to predict drug-targetdisease triple associations. Method: Six association types retrieved from public databases are used to construct a heterogeneous network comprising drugs, targets, and diseases. The network embedding algorithm Mashup is applied to extract features for drugs, targets, and diseases, which are then combined to represent each drug-target-disease association. The classification model is trained using LightGBM. Results: Cross-validation on eight datasets demonstrates the high performance of PDTDAHN, with AUROC and AUPR exceeding 0.9. This model outperforms previous models based on pairwise association predictions. Conclusion: The proposed model effectively predicts drug-target-disease triple associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背后的小白菜完成签到,获得积分10
刚刚
叶玉雯完成签到 ,获得积分20
1秒前
充电小子完成签到 ,获得积分10
2秒前
粗犷的凌兰完成签到,获得积分10
2秒前
Akim应助方向采纳,获得10
3秒前
烟花应助木中一采纳,获得10
4秒前
李健应助走过的风采纳,获得10
4秒前
4秒前
ASHhan111完成签到,获得积分10
4秒前
叶玉雯关注了科研通微信公众号
6秒前
gua完成签到 ,获得积分10
6秒前
啦啦完成签到 ,获得积分10
7秒前
sube完成签到,获得积分10
7秒前
张大星完成签到 ,获得积分10
9秒前
秦屿发布了新的文献求助10
12秒前
ziwei完成签到 ,获得积分10
12秒前
Orange应助123asd采纳,获得10
13秒前
星辰大海应助123asd采纳,获得10
13秒前
13秒前
13秒前
Tohka完成签到 ,获得积分10
14秒前
科研通AI6应助dzh采纳,获得10
14秒前
一颗松应助马雪滢采纳,获得10
14秒前
14秒前
123别认出我完成签到,获得积分10
15秒前
义气的断秋完成签到,获得积分10
16秒前
16秒前
Red完成签到,获得积分10
17秒前
夏xx完成签到 ,获得积分10
18秒前
小一完成签到,获得积分10
18秒前
livo发布了新的文献求助10
18秒前
emeqwq发布了新的文献求助10
19秒前
Red发布了新的文献求助10
21秒前
Syun完成签到,获得积分10
22秒前
美丽的冰枫完成签到,获得积分10
23秒前
24秒前
科研通AI5应助归尘采纳,获得10
25秒前
emeqwq完成签到,获得积分10
25秒前
yy不是m完成签到,获得积分10
25秒前
无花果应助找找采纳,获得10
25秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5130554
求助须知:如何正确求助?哪些是违规求助? 4332648
关于积分的说明 13498156
捐赠科研通 4169169
什么是DOI,文献DOI怎么找? 2285499
邀请新用户注册赠送积分活动 1286489
关于科研通互助平台的介绍 1227430