PDTDAHN: Predicting Drug-Target-Disease Associations using a Heterogeneous Network

药品 疾病 药物靶点 计算机科学 计算生物学 医学 药理学 内科学 生物
作者
Lei Chen,Jingdong Li
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:20
标识
DOI:10.2174/0115748936359702250120114240
摘要

Background: Disease is a major threat to life, and extensive efforts have been made over the past centuries to develop effective treatments. Identifying drug-disease and disease-target associations is crucial for therapeutic advancements, whereas drug-target associations facilitate the design of more effective treatment strategies. However, traditional experimental approaches for identifying these associations are costly and time-consuming. Numerous computational models have been developed to predict drug-target, drug-disease, and disease-target associations. However, these models are designed individually and cannot directly predict drug-target-disease associations, which involve interconnections among drugs, targets, and diseases. Such triple associations provide deeper insights into disease mechanisms and therapeutic interventions by capturing high-order associations. Objective: This study proposes a computational model named PDTDAHN to predict drug-targetdisease triple associations. Method: Six association types retrieved from public databases are used to construct a heterogeneous network comprising drugs, targets, and diseases. The network embedding algorithm Mashup is applied to extract features for drugs, targets, and diseases, which are then combined to represent each drug-target-disease association. The classification model is trained using LightGBM. Results: Cross-validation on eight datasets demonstrates the high performance of PDTDAHN, with AUROC and AUPR exceeding 0.9. This model outperforms previous models based on pairwise association predictions. Conclusion: The proposed model effectively predicts drug-target-disease triple associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清枫完成签到,获得积分10
刚刚
科研小萌新完成签到,获得积分10
1秒前
1秒前
务实水绿完成签到,获得积分20
1秒前
东东发布了新的文献求助10
2秒前
王木山完成签到,获得积分10
2秒前
再睡5分钟发布了新的文献求助10
2秒前
清枫发布了新的文献求助10
3秒前
robinhood完成签到,获得积分10
3秒前
4秒前
zys完成签到,获得积分10
4秒前
watertable应助en采纳,获得10
4秒前
4秒前
5秒前
6秒前
6秒前
7秒前
8秒前
清欢完成签到,获得积分10
8秒前
10秒前
MJ发布了新的文献求助10
10秒前
东东完成签到,获得积分20
10秒前
10秒前
11秒前
11秒前
清欢发布了新的文献求助10
11秒前
Ava应助liul采纳,获得10
11秒前
细心悟空发布了新的文献求助10
11秒前
bkagyin应助不困采纳,获得10
12秒前
gu完成签到 ,获得积分10
13秒前
快乐冰之完成签到 ,获得积分10
13秒前
晗仔发布了新的文献求助30
13秒前
烟花应助火星上盼山采纳,获得10
14秒前
Philo发布了新的文献求助10
14秒前
爱笑的莫茗完成签到,获得积分10
14秒前
15秒前
深情安青应助鹏1采纳,获得10
15秒前
油炸小丸子完成签到,获得积分10
16秒前
Aurora发布了新的文献求助10
16秒前
坚定白风发布了新的文献求助10
16秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470747
求助须知:如何正确求助?哪些是违规求助? 3063674
关于积分的说明 9085172
捐赠科研通 2754236
什么是DOI,文献DOI怎么找? 1511336
邀请新用户注册赠送积分活动 698372
科研通“疑难数据库(出版商)”最低求助积分说明 698253