PDTDAHN: Predicting Drug-Target-Disease Associations using a Heterogeneous Network

药品 疾病 药物靶点 计算机科学 计算生物学 医学 药理学 内科学 生物
作者
Lei Chen,Jingdong Li
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:20 被引量:2
标识
DOI:10.2174/0115748936359702250120114240
摘要

Background: Disease is a major threat to life, and extensive efforts have been made over the past centuries to develop effective treatments. Identifying drug-disease and disease-target associations is crucial for therapeutic advancements, whereas drug-target associations facilitate the design of more effective treatment strategies. However, traditional experimental approaches for identifying these associations are costly and time-consuming. Numerous computational models have been developed to predict drug-target, drug-disease, and disease-target associations. However, these models are designed individually and cannot directly predict drug-target-disease associations, which involve interconnections among drugs, targets, and diseases. Such triple associations provide deeper insights into disease mechanisms and therapeutic interventions by capturing high-order associations. Objective: This study proposes a computational model named PDTDAHN to predict drug-targetdisease triple associations. Method: Six association types retrieved from public databases are used to construct a heterogeneous network comprising drugs, targets, and diseases. The network embedding algorithm Mashup is applied to extract features for drugs, targets, and diseases, which are then combined to represent each drug-target-disease association. The classification model is trained using LightGBM. Results: Cross-validation on eight datasets demonstrates the high performance of PDTDAHN, with AUROC and AUPR exceeding 0.9. This model outperforms previous models based on pairwise association predictions. Conclusion: The proposed model effectively predicts drug-target-disease triple associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
别闹闹发布了新的文献求助10
4秒前
幸运星发布了新的文献求助10
4秒前
CipherSage应助mark采纳,获得10
6秒前
pluto应助从容的香菇采纳,获得10
6秒前
科研通AI5应助cccyq采纳,获得10
7秒前
科研狗完成签到,获得积分10
9秒前
英俊的铭应助gs19960828采纳,获得10
10秒前
MrTStar完成签到 ,获得积分10
12秒前
淡定的惜完成签到,获得积分20
15秒前
完美世界应助fengliurencai采纳,获得10
20秒前
思源应助大面包采纳,获得10
21秒前
sandra完成签到 ,获得积分10
22秒前
iris601完成签到,获得积分10
24秒前
时笙发布了新的文献求助30
26秒前
温柔的迎荷完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
30秒前
31秒前
31秒前
传奇3应助快乐一江采纳,获得10
32秒前
传统的纸飞机完成签到 ,获得积分10
32秒前
32秒前
32秒前
王子安应助lilila666采纳,获得10
34秒前
大面包发布了新的文献求助10
35秒前
情怀应助漫山采纳,获得10
36秒前
zzz完成签到,获得积分10
37秒前
gs19960828发布了新的文献求助10
38秒前
幸福大白发布了新的文献求助30
38秒前
脑洞疼应助jbhb采纳,获得10
42秒前
42秒前
gs19960828完成签到,获得积分10
43秒前
Younglee完成签到,获得积分10
47秒前
47秒前
xiaoxuan完成签到,获得积分10
48秒前
49秒前
Garnieta完成签到,获得积分10
50秒前
彤光赫显发布了新的文献求助10
51秒前
51秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174