PDTDAHN: Predicting Drug-Target-Disease Associations using a Heterogeneous Network

药品 疾病 药物靶点 计算机科学 计算生物学 医学 药理学 内科学 生物
作者
Lei Chen,Jingdong Li
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:20 被引量:2
标识
DOI:10.2174/0115748936359702250120114240
摘要

Background: Disease is a major threat to life, and extensive efforts have been made over the past centuries to develop effective treatments. Identifying drug-disease and disease-target associations is crucial for therapeutic advancements, whereas drug-target associations facilitate the design of more effective treatment strategies. However, traditional experimental approaches for identifying these associations are costly and time-consuming. Numerous computational models have been developed to predict drug-target, drug-disease, and disease-target associations. However, these models are designed individually and cannot directly predict drug-target-disease associations, which involve interconnections among drugs, targets, and diseases. Such triple associations provide deeper insights into disease mechanisms and therapeutic interventions by capturing high-order associations. Objective: This study proposes a computational model named PDTDAHN to predict drug-targetdisease triple associations. Method: Six association types retrieved from public databases are used to construct a heterogeneous network comprising drugs, targets, and diseases. The network embedding algorithm Mashup is applied to extract features for drugs, targets, and diseases, which are then combined to represent each drug-target-disease association. The classification model is trained using LightGBM. Results: Cross-validation on eight datasets demonstrates the high performance of PDTDAHN, with AUROC and AUPR exceeding 0.9. This model outperforms previous models based on pairwise association predictions. Conclusion: The proposed model effectively predicts drug-target-disease triple associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
2秒前
2秒前
大力水手完成签到,获得积分0
4秒前
6秒前
cm完成签到,获得积分10
8秒前
酷炫的听枫完成签到 ,获得积分10
9秒前
吱吱吱完成签到 ,获得积分10
10秒前
11秒前
上善若水呦完成签到 ,获得积分10
11秒前
小羡完成签到 ,获得积分10
11秒前
cqwswfl完成签到 ,获得积分20
12秒前
南山无梅落完成签到,获得积分10
13秒前
啵妞完成签到 ,获得积分10
13秒前
上官若男应助qiqi采纳,获得30
15秒前
拼搏的潘子完成签到,获得积分10
16秒前
zsj完成签到,获得积分10
17秒前
dolesy发布了新的文献求助10
18秒前
执着烧鹅完成签到 ,获得积分10
18秒前
哈哈哈完成签到,获得积分10
20秒前
yar应助博修采纳,获得10
22秒前
可爱的函函应助博修采纳,获得10
22秒前
MchemG应助博修采纳,获得10
22秒前
酷波er应助博修采纳,获得10
23秒前
时代更迭完成签到 ,获得积分10
23秒前
24秒前
WGOIST完成签到,获得积分10
25秒前
九九完成签到 ,获得积分10
25秒前
李新宇完成签到 ,获得积分10
26秒前
大橙子发布了新的文献求助10
30秒前
库凯伊完成签到,获得积分10
30秒前
duckspy发布了新的文献求助10
31秒前
CodeCraft应助jenny采纳,获得10
33秒前
lhnsisi完成签到,获得积分10
34秒前
jhlz5879完成签到,获得积分10
35秒前
悦耳曼凝完成签到 ,获得积分10
36秒前
文静的紫萱完成签到,获得积分10
36秒前
拼搏的飞薇完成签到,获得积分10
37秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022