PDTDAHN: Predicting Drug-Target-Disease Associations using a Heterogeneous Network

药品 疾病 药物靶点 计算机科学 计算生物学 医学 药理学 内科学 生物
作者
Lei Chen,Jingdong Li
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:20 被引量:2
标识
DOI:10.2174/0115748936359702250120114240
摘要

Background: Disease is a major threat to life, and extensive efforts have been made over the past centuries to develop effective treatments. Identifying drug-disease and disease-target associations is crucial for therapeutic advancements, whereas drug-target associations facilitate the design of more effective treatment strategies. However, traditional experimental approaches for identifying these associations are costly and time-consuming. Numerous computational models have been developed to predict drug-target, drug-disease, and disease-target associations. However, these models are designed individually and cannot directly predict drug-target-disease associations, which involve interconnections among drugs, targets, and diseases. Such triple associations provide deeper insights into disease mechanisms and therapeutic interventions by capturing high-order associations. Objective: This study proposes a computational model named PDTDAHN to predict drug-targetdisease triple associations. Method: Six association types retrieved from public databases are used to construct a heterogeneous network comprising drugs, targets, and diseases. The network embedding algorithm Mashup is applied to extract features for drugs, targets, and diseases, which are then combined to represent each drug-target-disease association. The classification model is trained using LightGBM. Results: Cross-validation on eight datasets demonstrates the high performance of PDTDAHN, with AUROC and AUPR exceeding 0.9. This model outperforms previous models based on pairwise association predictions. Conclusion: The proposed model effectively predicts drug-target-disease triple associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助vigour采纳,获得10
刚刚
研友_VZG7GZ应助关尔匕禾页采纳,获得10
1秒前
科研通AI5应助火星上念梦采纳,获得10
1秒前
聪明无敌小腚宝完成签到,获得积分10
2秒前
虚心求学完成签到,获得积分10
2秒前
Owen应助<小天才>采纳,获得10
5秒前
英姑应助九思采纳,获得10
6秒前
7秒前
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
JamesPei应助机灵的囧采纳,获得10
10秒前
llll发布了新的文献求助10
10秒前
orixero应助xmh采纳,获得10
10秒前
wq1020发布了新的文献求助10
12秒前
13秒前
皮皮蛙完成签到,获得积分10
13秒前
情怀应助常芹采纳,获得10
14秒前
肖肖发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
缥缈问柳完成签到,获得积分10
15秒前
15秒前
明理念桃完成签到,获得积分10
16秒前
13333发布了新的文献求助10
17秒前
Ava应助不吃意面的老番茄采纳,获得10
19秒前
19秒前
zhao完成签到 ,获得积分10
21秒前
22秒前
22秒前
22秒前
xmh完成签到,获得积分10
23秒前
什么也难不倒我完成签到 ,获得积分10
23秒前
24秒前
孟一发布了新的文献求助30
24秒前
25秒前
小幻完成签到,获得积分10
25秒前
好宝宝发布了新的文献求助10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988838
求助须知:如何正确求助?哪些是违规求助? 3531250
关于积分的说明 11252914
捐赠科研通 3269838
什么是DOI,文献DOI怎么找? 1804820
邀请新用户注册赠送积分活动 881943
科研通“疑难数据库(出版商)”最低求助积分说明 809028