已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Convolution-Enhanced Bi-Branch Adaptive Transformer With Cross-Task Interaction for Food Category and Ingredient Recognition

计算机科学 变压器 人工智能 成分 机器学习 卷积神经网络 模式识别(心理学) 数据挖掘 化学 食品科学 电压 物理 量子力学
作者
Yuxin Liu,Weiqing Min,Shuqiang Jiang,Yong Rui
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2572-2586 被引量:4
标识
DOI:10.1109/tip.2024.3374211
摘要

Recently, visual food analysis has received more and more attention in the computer vision community due to its wide application scenarios, e.g., diet nutrition management, smart restaurant, and personalized diet recommendation. Considering that food images are unstructured images with complex and unfixed visual patterns, mining food-related semantic-aware regions is crucial. Furthermore, the ingredients contained in food images are semantically related to each other due to the cooking habits and have significant semantic relationships with food categories under the hierarchical food classification ontology. Therefore, modeling the long-range semantic relationships between ingredients and the categories-ingredients semantic interactions is beneficial for ingredient recognition and food analysis. Taking these factors into consideration, we propose a multi-task learning framework for food category and ingredient recognition. This framework mainly consists of a food-orient Transformer named Convolution-Enhanced Bi-Branch Adaptive Transformer (CBiAFormer) and a multi-task category-ingredient recognition network called Structural Learning and Cross-Task Interaction (SLCI). In order to capture the complex and unfixed fine-grained patterns of food images, we propose a query-aware data-adaptive attention mechanism called Bi-Branch Adaptive Attention (BiA-Attention) in CBiAFormer, which consists of a local fine-grained branch and a global coarse-grained branch to mine local and global semantic-aware regions for different input images through an adaptive candidate key/value sets assignment for each query. Additionally, a convolutional patch embedding module is proposed to extract the fine-grained features which are neglected by Transformers. To fully utilize the ingredient information, we propose SLCI, which consists of cross-layer attention to model the semantic relationships between ingredients and two cross-task interaction modules to mine the semantic interactions between categories and ingredients. Extensive experiments show that our method achieves competitive performance on three mainstream food datasets (ETH Food-101, Vireo Food-172, and ISIA Food-200). Visualization analyses of CBiAFormer and SLCI on two tasks prove the effectiveness of our method. Codes will be released upon publication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奥利奥完成签到,获得积分10
刚刚
归海剑封发布了新的文献求助100
1秒前
1364135702完成签到 ,获得积分10
1秒前
windtalker发布了新的文献求助10
2秒前
Mingjun完成签到 ,获得积分10
2秒前
大方语堂关注了科研通微信公众号
3秒前
无私巧荷完成签到,获得积分10
3秒前
阳光完成签到,获得积分20
3秒前
奥利奥发布了新的文献求助10
4秒前
xiemeili完成签到 ,获得积分10
6秒前
GGbong完成签到 ,获得积分10
9秒前
旺旺小小酥完成签到,获得积分10
9秒前
10秒前
言辞完成签到,获得积分10
11秒前
xiao完成签到 ,获得积分10
13秒前
13秒前
123456777完成签到 ,获得积分10
13秒前
kaka完成签到,获得积分10
15秒前
喝可乐的萝卜兔完成签到 ,获得积分10
19秒前
samuel完成签到,获得积分10
19秒前
20秒前
Jemma完成签到 ,获得积分10
21秒前
caroline完成签到 ,获得积分10
21秒前
田様应助tinyliiyong采纳,获得10
24秒前
鱼笙完成签到,获得积分10
24秒前
沉默沛白完成签到,获得积分10
25秒前
27秒前
钮祜禄萱完成签到 ,获得积分10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
杳鸢应助科研通管家采纳,获得200
27秒前
大模型应助科研通管家采纳,获得10
27秒前
鱼笙发布了新的文献求助10
28秒前
大模型应助自然的茉莉采纳,获得10
28秒前
28秒前
28秒前
Charlie完成签到,获得积分10
30秒前
Yang发布了新的文献求助10
32秒前
领导范儿应助捏个小雪团采纳,获得10
35秒前
S.完成签到 ,获得积分10
35秒前
Leviathan完成签到 ,获得积分10
37秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307213
求助须知:如何正确求助?哪些是违规求助? 2940961
关于积分的说明 8499788
捐赠科研通 2615195
什么是DOI,文献DOI怎么找? 1428763
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382