已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Convolution-Enhanced Bi-Branch Adaptive Transformer With Cross-Task Interaction for Food Category and Ingredient Recognition

计算机科学 变压器 人工智能 成分 机器学习 卷积神经网络 模式识别(心理学) 数据挖掘 食品科学 量子力学 物理 电压 化学
作者
Yuxin Liu,Weiqing Min,Shuqiang Jiang,Yong Rui
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2572-2586 被引量:4
标识
DOI:10.1109/tip.2024.3374211
摘要

Recently, visual food analysis has received more and more attention in the computer vision community due to its wide application scenarios, e.g., diet nutrition management, smart restaurant, and personalized diet recommendation. Considering that food images are unstructured images with complex and unfixed visual patterns, mining food-related semantic-aware regions is crucial. Furthermore, the ingredients contained in food images are semantically related to each other due to the cooking habits and have significant semantic relationships with food categories under the hierarchical food classification ontology. Therefore, modeling the long-range semantic relationships between ingredients and the categories-ingredients semantic interactions is beneficial for ingredient recognition and food analysis. Taking these factors into consideration, we propose a multi-task learning framework for food category and ingredient recognition. This framework mainly consists of a food-orient Transformer named Convolution-Enhanced Bi-Branch Adaptive Transformer (CBiAFormer) and a multi-task category-ingredient recognition network called Structural Learning and Cross-Task Interaction (SLCI). In order to capture the complex and unfixed fine-grained patterns of food images, we propose a query-aware data-adaptive attention mechanism called Bi-Branch Adaptive Attention (BiA-Attention) in CBiAFormer, which consists of a local fine-grained branch and a global coarse-grained branch to mine local and global semantic-aware regions for different input images through an adaptive candidate key/value sets assignment for each query. Additionally, a convolutional patch embedding module is proposed to extract the fine-grained features which are neglected by Transformers. To fully utilize the ingredient information, we propose SLCI, which consists of cross-layer attention to model the semantic relationships between ingredients and two cross-task interaction modules to mine the semantic interactions between categories and ingredients. Extensive experiments show that our method achieves competitive performance on three mainstream food datasets (ETH Food-101, Vireo Food-172, and ISIA Food-200). Visualization analyses of CBiAFormer and SLCI on two tasks prove the effectiveness of our method. Codes will be released upon publication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐的清发布了新的文献求助10
刚刚
哈哈哈完成签到 ,获得积分10
刚刚
白羽丫完成签到,获得积分10
1秒前
努力学习完成签到,获得积分10
3秒前
3秒前
怡然剑成完成签到 ,获得积分10
4秒前
如星完成签到 ,获得积分10
4秒前
ZTLlele完成签到 ,获得积分10
6秒前
7秒前
啦啦啦啦完成签到,获得积分10
9秒前
欣妍完成签到,获得积分10
11秒前
榆木风完成签到 ,获得积分10
11秒前
haha完成签到 ,获得积分10
14秒前
15秒前
勤恳的语蝶完成签到 ,获得积分10
16秒前
CipherSage应助zhaoruiqi采纳,获得10
19秒前
19秒前
HaoyangDu发布了新的文献求助10
22秒前
shentaii完成签到,获得积分10
27秒前
28秒前
勤恳问薇完成签到 ,获得积分10
30秒前
Neuronicus完成签到,获得积分10
31秒前
完美世界应助小胖子采纳,获得10
32秒前
生物云完成签到,获得积分10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
大个应助科研通管家采纳,获得10
32秒前
ccm应助科研通管家采纳,获得10
32秒前
无解klein瓶完成签到,获得积分10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得10
32秒前
今后应助HaoyangDu采纳,获得10
32秒前
烟花应助科研通管家采纳,获得10
32秒前
GingerF应助科研通管家采纳,获得10
32秒前
liao应助科研通管家采纳,获得10
32秒前
GingerF应助科研通管家采纳,获得50
32秒前
浮游应助科研通管家采纳,获得10
32秒前
浮游应助科研通管家采纳,获得30
32秒前
Ak完成签到,获得积分0
32秒前
香蕉觅云应助科研通管家采纳,获得10
32秒前
北地风情应助科研通管家采纳,获得20
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458670
求助须知:如何正确求助?哪些是违规求助? 4564690
关于积分的说明 14296542
捐赠科研通 4489739
什么是DOI,文献DOI怎么找? 2459274
邀请新用户注册赠送积分活动 1448998
关于科研通互助平台的介绍 1424502