已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Convolution-Enhanced Bi-Branch Adaptive Transformer With Cross-Task Interaction for Food Category and Ingredient Recognition

计算机科学 变压器 人工智能 成分 机器学习 卷积神经网络 模式识别(心理学) 数据挖掘 食品科学 量子力学 物理 电压 化学
作者
Yuxin Liu,Weiqing Min,Shuqiang Jiang,Yong Rui
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2572-2586 被引量:4
标识
DOI:10.1109/tip.2024.3374211
摘要

Recently, visual food analysis has received more and more attention in the computer vision community due to its wide application scenarios, e.g., diet nutrition management, smart restaurant, and personalized diet recommendation. Considering that food images are unstructured images with complex and unfixed visual patterns, mining food-related semantic-aware regions is crucial. Furthermore, the ingredients contained in food images are semantically related to each other due to the cooking habits and have significant semantic relationships with food categories under the hierarchical food classification ontology. Therefore, modeling the long-range semantic relationships between ingredients and the categories-ingredients semantic interactions is beneficial for ingredient recognition and food analysis. Taking these factors into consideration, we propose a multi-task learning framework for food category and ingredient recognition. This framework mainly consists of a food-orient Transformer named Convolution-Enhanced Bi-Branch Adaptive Transformer (CBiAFormer) and a multi-task category-ingredient recognition network called Structural Learning and Cross-Task Interaction (SLCI). In order to capture the complex and unfixed fine-grained patterns of food images, we propose a query-aware data-adaptive attention mechanism called Bi-Branch Adaptive Attention (BiA-Attention) in CBiAFormer, which consists of a local fine-grained branch and a global coarse-grained branch to mine local and global semantic-aware regions for different input images through an adaptive candidate key/value sets assignment for each query. Additionally, a convolutional patch embedding module is proposed to extract the fine-grained features which are neglected by Transformers. To fully utilize the ingredient information, we propose SLCI, which consists of cross-layer attention to model the semantic relationships between ingredients and two cross-task interaction modules to mine the semantic interactions between categories and ingredients. Extensive experiments show that our method achieves competitive performance on three mainstream food datasets (ETH Food-101, Vireo Food-172, and ISIA Food-200). Visualization analyses of CBiAFormer and SLCI on two tasks prove the effectiveness of our method. Codes will be released upon publication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无限冰香完成签到,获得积分10
1秒前
林希冀发布了新的文献求助10
3秒前
dominic12361完成签到 ,获得积分10
5秒前
coke发布了新的文献求助10
7秒前
勤奋的立果完成签到 ,获得积分10
9秒前
柏林寒冬应助养猪骑士采纳,获得10
12秒前
13秒前
ftl完成签到 ,获得积分10
14秒前
小熊熊完成签到,获得积分10
15秒前
歪方橘发布了新的文献求助10
16秒前
22秒前
林希冀完成签到,获得积分10
22秒前
22秒前
JamesPei应助chenfaju采纳,获得10
23秒前
小蘑菇应助山猪吃细糠采纳,获得10
24秒前
深情安青应助SDNUDRUG采纳,获得10
24秒前
莫道桑榆完成签到,获得积分10
24秒前
26秒前
xunuo发布了新的文献求助10
26秒前
学术小白完成签到,获得积分10
27秒前
MchemG发布了新的文献求助20
27秒前
研友_59AB85完成签到,获得积分10
28秒前
悠木完成签到 ,获得积分10
29秒前
羊羔蓉完成签到,获得积分10
30秒前
31秒前
Zeno完成签到 ,获得积分10
33秒前
fransiccarey完成签到,获得积分10
34秒前
小王贼棒发布了新的文献求助10
37秒前
37秒前
歪方橘完成签到,获得积分10
37秒前
biubiu完成签到,获得积分10
39秒前
expuery发布了新的文献求助10
41秒前
PLAGH221完成签到,获得积分10
41秒前
Honor完成签到 ,获得积分10
42秒前
terryok完成签到,获得积分10
42秒前
小鱼发布了新的文献求助50
42秒前
静静发布了新的文献求助10
43秒前
爆米花应助zhaoaotao采纳,获得10
44秒前
华仔应助佳丽采纳,获得10
46秒前
fh发布了新的文献求助10
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968181
求助须知:如何正确求助?哪些是违规求助? 3513192
关于积分的说明 11166764
捐赠科研通 3248420
什么是DOI,文献DOI怎么找? 1794243
邀请新用户注册赠送积分活动 874936
科研通“疑难数据库(出版商)”最低求助积分说明 804629