BERT2OME: Prediction of 2′-O-Methylation Modifications From RNA Sequence by Transformer Architecture Based on BERT

变压器 编码器 深度学习 语言模型 计算生物学 卷积神经网络 人工智能 机器学习 计算机科学 生物 自然语言处理 物理 电压 量子力学 操作系统
作者
Necla Nisa Soylu,Emre Sefer
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 2177-2189 被引量:12
标识
DOI:10.1109/tcbb.2023.3237769
摘要

Recent work on language models has resulted in state-of-the-art performance on various language tasks. Among these, Bidirectional Encoder Representations from Transformers (BERT) has focused on contextualizing word embeddings to extract context and semantics of the words. On the other hand, post-transcriptional 2'-O-methylation (Nm) RNA modification is important in various cellular tasks and related to a number of diseases. The existing high-throughput experimental techniques take longer time to detect these modifications, and costly in exploring these functional processes. Here, to deeply understand the associated biological processes faster, we come up with an efficient method Bert2Ome to infer 2'-O-methylation RNA modification sites from RNA sequences. Bert2Ome combines BERT-based model with convolutional neural networks (CNN) to infer the relationship between the modification sites and RNA sequence content. Unlike the methods proposed so far, Bert2Ome assumes each given RNA sequence as a text and focuses on improving the modification prediction performance by integrating the pretrained deep learning-based language model BERT. Additionally, our transformer-based approach could infer modification sites across multiple species. According to 5-fold cross-validation, human and mouse accuracies were 99.15% and 94.35% respectively. Similarly, ROC AUC scores were 0.99, 0.94 for the same species. Detailed results show that Bert2Ome reduces the time consumed in biological experiments and outperforms the existing approaches across different datasets and species over multiple metrics. Additionally, deep learning approaches such as 2D CNNs are more promising in learning BERT attributes than more conventional machine learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哈伊呀发布了新的文献求助10
1秒前
1秒前
稳重的闭月完成签到,获得积分10
2秒前
星star完成签到 ,获得积分10
3秒前
现代的又柔应助舒适路人采纳,获得10
6秒前
NicoLi发布了新的文献求助10
7秒前
幸福大白发布了新的文献求助10
7秒前
李爱国应助未来不可期采纳,获得10
8秒前
AI完成签到 ,获得积分10
8秒前
8秒前
8秒前
打工人不酷完成签到 ,获得积分10
8秒前
研友_8yN60L发布了新的文献求助10
9秒前
Singularity应助Cassiel采纳,获得10
9秒前
9秒前
10秒前
10秒前
Jasper应助奕颖王采纳,获得10
11秒前
陈淑玲发布了新的文献求助10
11秒前
喵喵发文章啦完成签到 ,获得积分10
11秒前
12秒前
LuckyCookie发布了新的文献求助10
13秒前
清圆527发布了新的文献求助10
13秒前
13秒前
脑洞疼应助阔达的凡采纳,获得10
13秒前
14秒前
sparrow完成签到,获得积分10
14秒前
wd发布了新的文献求助10
15秒前
15秒前
我是老大应助平常幼菱采纳,获得10
15秒前
燧人氏发布了新的文献求助10
15秒前
科研通AI2S应助11采纳,获得10
16秒前
16秒前
CXSCXD发布了新的文献求助10
16秒前
GealAntS完成签到,获得积分0
17秒前
HuiyunXiao发布了新的文献求助10
17秒前
洛洛发布了新的文献求助10
17秒前
共享精神应助RenYigmin采纳,获得10
18秒前
henritsie发布了新的文献求助10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3525857
求助须知:如何正确求助?哪些是违规求助? 3106392
关于积分的说明 9279938
捐赠科研通 2803927
什么是DOI,文献DOI怎么找? 1539116
邀请新用户注册赠送积分活动 716462
科研通“疑难数据库(出版商)”最低求助积分说明 709449