超级电容器
石墨烯
材料科学
电容去离子
纳米孔
共价有机骨架
化学工程
纳米技术
法拉第效率
电极
电解质
电化学
电容
储能
混合材料
多孔性
化学
复合材料
功率(物理)
物理
物理化学
量子力学
工程类
作者
Liming Xu,Yong Liu,Zibiao Ding,Xingtao Xu,Xinjuan Liu,Zhiwei Gong,Jiabao Li,Ting Lu,Likun Pan
出处
期刊:Small
[Wiley]
日期:2023-11-10
被引量:23
标识
DOI:10.1002/smll.202307843
摘要
Abstract Covalent organic frameworks (COFs) with flexible periodic skeletons and ordered nanoporous structures have attracted much attention as potential candidate electrode materials for green energy storage and efficient seawater desalination. Further improving the intrinsic electronic conductivity and releasing porosity of COF‐based materials is a necessary strategy to improve their electrochemical performance. Herein, the employed graphene as the conductive substrate to in situ grow 2D redox‐active COF (TFPDQ‐COF) with redox activity under solvent‐free conditions to prepare TFPDQ‐COF/graphene (TFPDQGO) nanohybrids and explores their application in both supercapacitor and hybrid capacitive deionization (HCDI). By optimizing the hybridization ratio, TFPDQGO exhibits a large specific capacitance of 429.0 F g −1 due to the synergistic effect of the charge transport highway provided by the graphene layers and the abundant redox‐active centers contained in the COF skeleton, and the assembled TFPDQGO//activated carbon (AC) asymmetric supercapacitor possesses a high energy output of 59.4 Wh kg −1 at a power density of 950 W kg −1 and good cycling life. Furthermore, the maximum salt adsorption capacity (SAC) of 58.4 mg g −1 and stable regeneration performance is attained for TFPDQGO‐based HCDI. This study highlights the new opportunities of COF‐based hybrid materials acting as high‐performance supercapacitor and HCDI electrode materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI