作者
Zi Yi Xu,Xiaodong He,Hong Qun Luo,Liqun Xu,Nian Bing Li
摘要
Owing to the predominance of dopamine (DA) in controlling mental health, planning an innovative method for DA detection with simplicity and high efficacy is conducive to the assessment of neurological disorders. Herein, an efficient fluorogenic tactic has been elaborated for ultrasensitive detection of DA with remarkably enhanced turn-on response. Utilizing a twisted intramolecular charge-transfer (TICT)-suppressing strategy, a highly emissive azocine derivative 11-hydroxy-2,3,6,7,11,12,13,14-octahydro-1H,5H,10H-11,14a-methanoazocino[5′,4′:4,5]furo[2,3-f]pyrido[3,2,1-ij]quinolin-10-one (J-Aza) is generated via a one-step reaction between DA and 8-hydroxyjulolidine. It is marvelous that J-Aza not only possesses ideal fluorescence quantum yield (ΦF) as high as 0.956 but also exhibits bathochromic shifted fluorescence (green emissive) and stronger anti-photobleaching capacity superior to traditional azocine-derived 1,2,3,4-tetrahydro-5H-4,11a-methanobenzofuro[2,3-d]azocin-5-one (Aza) with moderate ΦF, blue fluorescence, and poor photostability. By confining the TICT process, the detection limit to DA can be reduced to 80 pM, which is competitive in contrast to previously reported fluorescence methods. Encouraged by the instant response (within 90 s), wide linear range (0.1–500 nM), great selectivity, and excellent sensitivity, this fluorogenic method has been used for the real-time measurement of DA contents in practical urine samples with satisfactory results. Furthermore, the cerebral DA level in the reserpine-induced depression rat model has also been evaluated by our designed method, demonstrating its potent analytical applicability in the biosensing field.