计算机科学
随机性
代表(政治)
序列(生物学)
人工智能
集合(抽象数据类型)
序列标记
机器学习
比例(比率)
自然语言处理
噪音(视频)
模式识别(心理学)
数学
任务(项目管理)
程序设计语言
遗传学
图像(数学)
经济
法学
政治学
生物
政治
量子力学
管理
物理
统计
作者
Chilin Fu,Weichang Wu,Xiaolu Zhang,Jun Hu,Jing Wang,Jun Zhou
标识
DOI:10.1145/3583780.3614714
摘要
User behavior representation learned by self-supervised pre-training tasks is widely used in various domains and applications. Conventional methods usually follow the methodology in Natural Language Processing (NLP) to set the pre-training tasks. They either randomly mask some of the behaviors in the sequence and predict the masked ones or predict the next k behaviors. These methods fit for text sequence, in which the tokens are sequentially arranged subject to linguistic criterion. However, the user behavior sequences can be stochastic with noise and randomness. The same paradigm is intractable for learning a robust user behavioral representation.
科研通智能强力驱动
Strongly Powered by AbleSci AI