材料科学
电极
分离器(采油)
限制电流
电化学
离子
曲折
扩散
电化学动力学
导电体
储能
纳米技术
电化学能量转换
光电子学
化学工程
复合材料
化学
多孔性
热力学
物理
工程类
物理化学
功率(物理)
有机化学
量子力学
作者
Xinzhe Xue,Longsheng Feng,Qiu Ren,Cassidy Tran,Samuel Eisenberg,Anica Pinongcos,Logan Valdovinos,C Hsieh,Tae Wook Heo,Marcus A. Worsley,Cheng Zhu,Yat Li
标识
DOI:10.1007/s40820-024-01472-8
摘要
The architectural design of electrodes offers new opportunities for next-generation electrochemical energy storage devices (EESDs) by increasing surface area, thickness, and active materials mass loading while maintaining good ion diffusion through optimized electrode tortuosity. However, conventional thick electrodes increase ion diffusion length and cause larger ion concentration gradients, limiting reaction kinetics. We demonstrate a strategy for building interpenetrated structures that shortens ion diffusion length and reduces ion concentration inhomogeneity. This free-standing device structure also avoids short-circuiting without needing a separator. The feature size and number of interpenetrated units can be adjusted during printing to balance surface area and ion diffusion. Starting with a 3D-printed interpenetrated polymer substrate, we metallize it to make it conductive. This substrate has two individually addressable electrodes, allowing selective electrodeposition of energy storage materials. Using a Zn//MnO
科研通智能强力驱动
Strongly Powered by AbleSci AI