A Trustworthiness-Aware Spatial Task Allocation using a Fuzzy-based Trust and Reputation System Approach

众包 声誉 计算机科学 任务(项目管理) 推论 质量(理念) 可信赖性 数据科学 数据挖掘 机器学习 人工智能 计算机安全 万维网 社会学 经济 管理 哲学 认识论 社会科学
作者
Md Mujibur Rahman,Nor Aniza Abdullah
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:211: 118592-118592 被引量:3
标识
DOI:10.1016/j.eswa.2022.118592
摘要

Unlike crowdsourcing, Spatial Crowdsourcing (SC) requires workers to travel to a specific physical location to accomplish a task. Due to its open concept, the platform accepts any interested individual as workers or task requesters, including those who may be unreliable and untrustworthy. Deploying untrustworthy workers in spatial tasks can negatively impact the quality of the completed tasks, thus threatening the sustainability of the SC platform. Recent research has been carried out to evaluate workers’ trustworthiness based on the Trust and Reputation (TR) system. Current TR system approaches for evaluating workers’ trustworthiness are mostly relying on a single trust or reputation factor, and the decisions are mainly binary. This binary representation of trustworthiness is considerably rigid and may cause severe repercussions like, an untrustworthy worker who could be the victim of partial ratings may end up not getting any kind of spatial tasks from the system, or a trustworthy worker who may have malicious intention may be allocated a spatial task. To address these limitations, we propose a novel framework that allocates every spatial task according to a workers’ degree of perceived trustworthiness computed based on multi-criteria trust and reputation factors using a Mamdani fuzzy inference system. Our work considers historical ratings to calculate reputation value, applies sentiment analysis to infer trust value, implements Mamdani fuzzy inference to determine trustworthiness degree, and introduces the concept of referral to mitigate worker cold-start problems in spatial crowdsourcing. Our experimental findings on the Yelp real-world datasets demonstrate the reliability of the proposed framework to allocate every spatial task of various types to the most trustworthy workers from huge crowds of available workers. When evaluated against other baseline approaches, our approach achieves greater accuracy in allocating the right tasks to the most trustworthy workers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕黑君浩发布了新的文献求助20
1秒前
2秒前
3秒前
3秒前
联合工程发布了新的文献求助10
4秒前
4秒前
6秒前
Singularity应助soar采纳,获得10
8秒前
10秒前
两半桃花发布了新的文献求助10
11秒前
脑洞疼应助wenyi采纳,获得10
11秒前
14秒前
00暮霭沉沉00完成签到,获得积分10
14秒前
小丸子发布了新的文献求助10
15秒前
tinner完成签到,获得积分10
15秒前
kk完成签到,获得积分10
16秒前
5r应助zeid采纳,获得10
16秒前
calaite完成签到,获得积分10
21秒前
teriteri完成签到,获得积分10
21秒前
少年发布了新的文献求助10
22秒前
刻苦的乐巧完成签到,获得积分10
22秒前
24秒前
25秒前
26秒前
天天快乐应助千幻采纳,获得10
28秒前
独特的绯发布了新的文献求助30
28秒前
复杂的乐蕊完成签到,获得积分10
30秒前
Bruce发布了新的文献求助30
30秒前
30秒前
Leoniko完成签到 ,获得积分10
34秒前
orixero应助友易采纳,获得10
34秒前
吃货发布了新的文献求助10
35秒前
37秒前
40秒前
独特绣连发布了新的文献求助10
42秒前
斯文败类应助dhmdoctor采纳,获得10
43秒前
Lyw完成签到 ,获得积分10
43秒前
43秒前
43秒前
千幻发布了新的文献求助10
44秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3396549
求助须知:如何正确求助?哪些是违规求助? 3006214
关于积分的说明 8820039
捐赠科研通 2693290
什么是DOI,文献DOI怎么找? 1475247
科研通“疑难数据库(出版商)”最低求助积分说明 682393
邀请新用户注册赠送积分活动 675628