Automatic screening of patients with atrial fibrillation from 24-h Holter recording using deep learning

心房颤动 心脏病学 医学 内科学 人工智能 计算机科学
作者
Peng Zhang,Fan Lin,Fei Ma,Yuting Chen,Siyi Fang,Haiyan Zheng,Zuwen Xiang,Xiaoyun Yang,Qiang Li
出处
期刊:European heart journal [Oxford University Press]
卷期号:4 (3): 216-224 被引量:7
标识
DOI:10.1093/ehjdh/ztad018
摘要

Abstract Aims As the demand for atrial fibrillation (AF) screening increases, clinicians spend a significant amount of time identifying AF signals from massive amounts of data obtained during long-term dynamic electrocardiogram (ECG) monitoring. The identification of AF signals is subjective and depends on the experience of clinicians. However, experienced cardiologists are scarce. This study aimed to apply a deep learning-based algorithm to fully automate primary screening of patients with AF using 24-h Holter monitoring. Methods and results A deep learning model was developed to automatically detect AF episodes using RR intervals and was trained and evaluated on 23 621 (2297 AF and 21 324 non-AF) 24-h Holter recordings from 23 452 patients. Based on the AF episode detection results, patients with AF were automatically identified using the criterion of at least one AF episode lasting 6 min or longer. Performance was assessed on an independent real-world hospital-scenario test set (19 227 recordings) and a community-scenario test set (1299 recordings). For the two test sets, the model obtained high performance for the identification of patients with AF (sensitivity: 0.995 and 1.000; specificity: 0.985 and 0.997, respectively). Moreover, it obtained good and consistent performance (sensitivity: 1.000; specificity: 0.972) for an external public data set. Conclusion Using the criterion of at least one AF episode of 6 min or longer, the deep learning model can fully automatically screen patients for AF with high accuracy from long-term Holter monitoring data. This method may serve as a powerful and cost-effective tool for primary screening for AF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
真正的研友完成签到,获得积分10
刚刚
会撒娇的静芙应助Franklin采纳,获得10
1秒前
李伯涓完成签到,获得积分10
1秒前
南风发布了新的文献求助10
3秒前
3秒前
3秒前
英俊的铭应助Jason采纳,获得10
3秒前
胡小壳完成签到,获得积分10
4秒前
4秒前
5秒前
7秒前
7秒前
8秒前
9秒前
11秒前
快乐的鱼发布了新的文献求助10
13秒前
13秒前
赵悦彤发布了新的文献求助10
14秒前
和谐夏彤完成签到,获得积分10
15秒前
Jasper应助孙皮皮采纳,获得10
15秒前
15秒前
杨琴完成签到,获得积分10
15秒前
17秒前
18秒前
shinysparrow应助MMMV采纳,获得200
18秒前
所所应助Z123采纳,获得10
20秒前
21秒前
22秒前
鲤鱼水桃给鲤鱼水桃的求助进行了留言
23秒前
SciGPT应助姜敏敏采纳,获得10
23秒前
研友_V8Qmr8发布了新的文献求助10
24秒前
科研通AI2S应助Franklin采纳,获得10
25秒前
Yolenders发布了新的文献求助10
27秒前
27秒前
28秒前
28秒前
西行龟发布了新的文献求助10
28秒前
徐凤年发布了新的文献求助10
28秒前
28秒前
30秒前
高分求助中
Phase Relations in the System Nd-Fe-Cu 1000
FDA-2: Frenchay Dysarthria Assessment 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3215211
求助须知:如何正确求助?哪些是违规求助? 2863861
关于积分的说明 8140183
捐赠科研通 2529915
什么是DOI,文献DOI怎么找? 1364269
科研通“疑难数据库(出版商)”最低求助积分说明 644102
邀请新用户注册赠送积分活动 616634