介孔二氧化硅
止血
生物相容性
介孔材料
生物医学工程
材料科学
止血剂
核化学
超声
止血剂
外科
化学
色谱法
医学
有机化学
催化作用
冶金
作者
Zhuoran Zhang,Min Hou,Tao Liu,Fan Li,Kun Yang,Sheng Ding,Song Lin
标识
DOI:10.1177/08853282221126574
摘要
The medical disinfection cotton gauze is the most frequently used medical consumables for wound care. Here this ordinary commercial gauze was upgraded to a hemostatic gauze, which was loaded with mesoporous silica through in-situ synthesis and further microwave treatment. The original cotton gauze was pretreated with NaOH solutions for surface activation, soaked in double-silica source precursor solution for moderate in-situ synthesis, treated with microwave for quick template removement and dehydration. The final obtained hemostatic gauze (MS-G 1 ) showed superior physical, biocompatible and hemostatic advantages. The newborn mesoporous silica was firmly anchored onto the cotton fiber surface with <20% leaching after 10 min of sonication. The microwave treatment not only shortened the time for template removal but also promotes the formation of mesoporous structure. The clotting blood time (CBT) of MS-G 1 were only (62.00 ± 5.56 s), which was 23.14% shorter than that of original medical gauze, and even 3.6% shorter than Combat Gauze (CG). MS-G 1 also showed excellent biocompatibility in cytotoxicity tests of L-929 cells, with a 116% proliferation rate at the concentration of 5 mg/mL. Furthermore, the hemostatic performance was explored on a rabbit wound model of hemorrhagic liver injury, and MS-G 1 showed both shorter hemostasis time (113.75 s) and less blood loss (1.69 g) than that of CG (180.00 s, 5.13 g). The hemostatic gauze anchored with mesoporous silica was expected to be an excellent prehospital hemostatic dressing for field first aid.
科研通智能强力驱动
Strongly Powered by AbleSci AI