Large π-Aromatic Molecules as Potential Sensitizers for Highly Efficient Dye-Sensitized Solar Cells

色素敏化染料 卟啉 光化学 能量转换效率 化学 吸收(声学) 太阳能电池 材料科学 光电子学 催化作用 有机化学 电极 物理化学 电解质 复合材料
作者
Hiroshi Imahori,Tomokazu Umeyama,Seigo Ito
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:42 (11): 1809-1818 被引量:963
标识
DOI:10.1021/ar900034t
摘要

Recently, dye-sensitized solar cells have attracted much attention relevant to global environmental issues. Thus far, ruthenium(II) bipyridyl complexes have proven to be the most efficient TiO(2) sensitizers in dye-sensitized solar cells. However, a gradual increment in the highest power conversion efficiency has been recognized in the past decade. More importantly, considering that ruthenium is a rare metal, novel dyes without metal or using inexpensive metal are desirable for highly efficient dye-sensitized solar cells. Large pi-aromatic molecules, such as porphyrins, phthalocyanines, and perylenes, are important classes of potential sensitizers for highly efficient dye-sensitized solar cells, owing to their photostability and high light-harvesting capabilities that can allow applications in thinner, low-cost dye-sensitized solar cells. Porphyrins possess an intense Soret band at 400 nm and moderate Q bands at 600 nm. Nevertheless, the poor light-harvesting properties relative to the ruthenium complexes have limited the cell performance of porphyrin-sensitized TiO(2) cells. Elongation of the pi conjugation and loss of symmetry in porphyrins cause broadening and a red shift of the absorption bands together with an increasing intensity of the Q bands relative to that of the Soret band. On the basis of the strategy, the cell performance of porphyrin-sensitized solar cells has been improved intensively by the enhanced light absorption. Actually, some push-pull-type porphyrins have disclosed a remarkably high power conversion efficiency (6-7%) that was close to that of the ruthenium complexes. Phthalocyanines exhibit strong absorption around 300 and 700 nm and redox features that are similar to porphyrins. Moreover, phthalocyanines are transparent over a large region of the visible spectrum, thereby enabling the possibility of using them as "photovoltaic windows". However, the cell performance was poor, owing to strong aggregation and lack of directionality in the excited state. Novel unsymmetrical zinc phthalocyanine sensitizers with "push" and "pull" groups have made it possible to reduce the aggregation on a TiO(2) surface, tune the level of the excited state, and strengthen the electronic coupling between the phthalocyanine core and the TiO(2) surface. As a result, the power conversion efficiency of up to 3.5% has been achieved. Perylenes are well-known as chemically, thermally, and photophysically stable dyes and have been used in various optical devices and applications. Nevertheless, the power conversion efficiency remained low compared to other organic dyes. The origin of such limited cell performance is the poor electron-donating abilities of the perylenes, which makes it difficult to inject electrons from the excited singlet state of the perylenes to the conduction band of the TiO(2) electrode efficiently. Strongly electron-donating perylene carboxylic acid derivatives with amine substituents at their perylene core have allowed us to increase the power conversion efficiency of up to approximately 7% in perylene-sensitized solar cells. The efficiency of large pi-aromatic molecule-sensitized solar cells could be improved significantly if the dyes with larger red and near-infrared absorption could be developed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快友蕊完成签到 ,获得积分10
刚刚
1秒前
三叔完成签到,获得积分0
2秒前
大强完成签到,获得积分10
3秒前
活力菠萝完成签到,获得积分10
3秒前
虎虎虎完成签到,获得积分10
3秒前
dd完成签到,获得积分10
4秒前
5秒前
虎虎虎发布了新的文献求助10
5秒前
韦远侵完成签到,获得积分10
5秒前
NexusExplorer应助辛夷采纳,获得10
5秒前
5秒前
6秒前
7秒前
7秒前
LQ发布了新的文献求助20
7秒前
飞星发布了新的文献求助10
8秒前
浥青竹完成签到,获得积分10
8秒前
8秒前
所所应助彩色问旋采纳,获得10
9秒前
10秒前
SciGPT应助韭菜何子采纳,获得10
10秒前
无隅完成签到,获得积分10
10秒前
科研通AI2S应助zanilia采纳,获得10
11秒前
大个应助tgoutgou采纳,获得20
11秒前
123456发布了新的文献求助10
11秒前
Jun发布了新的文献求助10
12秒前
慕青应助labxgr采纳,获得10
12秒前
自由面包发布了新的文献求助10
12秒前
13秒前
13秒前
Kumiko完成签到,获得积分10
13秒前
14秒前
汉堡包应助飞星采纳,获得10
14秒前
15秒前
辛夷完成签到,获得积分10
16秒前
劝不了了完成签到,获得积分10
17秒前
爱撒娇的以丹完成签到,获得积分10
18秒前
Nick发布了新的文献求助10
18秒前
桀桀完成签到 ,获得积分10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312665
求助须知:如何正确求助?哪些是违规求助? 2945170
关于积分的说明 8523372
捐赠科研通 2620973
什么是DOI,文献DOI怎么找? 1433198
科研通“疑难数据库(出版商)”最低求助积分说明 664918
邀请新用户注册赠送积分活动 650255