细胞生物学
祖细胞
生物
浆细胞样树突状细胞
免疫系统
造血
细胞分化
树突状细胞
干细胞
免疫学
遗传学
基因
作者
Christina Dillmann,Javier Mora,Catherine Olesch,Bernhard Brüne,Andreas Weigert
标识
DOI:10.1515/hsz-2014-0271
摘要
Abstract The sphingolipid sphingosine-1-phosphate (S1P) has various functions in immune cell biology, regulating survival, proliferation, and, most prominently, migration. S1P couples to five G protein-coupled receptors (S1PR1–5) to transduce its effects on immune cell function. Expression of S1PR4 is restricted to immune cells. However, its impact on immune cell biology is largely elusive. In the current study, we intended to answer the question of whether S1P might affect plasmacytoid dendritic cell (pDC) migration, which dominantly express S1PR4. pDC are highly specialized cells producing large amounts of type I interferon in response to TLR7/9 ligands after viral infection or during autoimmunity. Surprisingly, we noticed a reduced abundance of pDC, particularly CD4 - pDC, in all organs of S1PR4-deficient vs. wildtype mice. This effect was not caused by altered migration of mature pDC, but rather a reduced potential of pDC progenitors, especially common DC progenitors, to differentiate into pDCs. In vitro studies suggested that reduced S1PR4-deficient pDC progenitor differentiation into mature pDC might be explained by both migration and differentiation of pDC progenitors in the bone marrow. As S1PR4 also affected the differentiation of CD34+ human hematopoietic stem cells into pDC, interfering with S1PR4 might be useful to reduce pDC numbers during autoimmunity.
科研通智能强力驱动
Strongly Powered by AbleSci AI