秀丽隐杆线虫
脂质代谢
化学
抗氧化剂
新陈代谢
生物化学
突变体
脂滴
基因
生物
内科学
医学
作者
Xiaoying Zhang,Wei Li,Yunzhou Tang,Chunxiu Lin,Yong Cao,Yunjiao Chen
标识
DOI:10.1021/acs.jafc.9b06167
摘要
Pentagalloyl glucose (PGG) has been studied for its valuable biological activities. However, the functional role of PGG in lipid metabolism in vivo is unclear. Here, we investigated the effects of PGG on lipid metabolism and its underlying mechanism in Caenorhabditis elegans. PGG decreased the accumulation of reactive oxygen species at 800 μM and remarkably increased the activities of antioxidant enzymes. PGG decreased significantly fat accumulation in wild-type worms (39.7 ± 5.7% in the normal group and 19.9 ± 4.5% in the high-fat group by Oil red O; 21.2 ± 2.7% in the high-fat group by Nile red; p < 0.001), but fat reduction by PGG was eliminated in the skn-1 mutant. The amount and size of lipid droplets in the ZXW618 mutant were decreased by PGG. The proportions of unsaturated fatty acids in both conditions were increased by PGG. In addition, the expression levels of fat metabolism genes were significantly changed in both conditions by PGG, which include mdt-15, pod-2, elo-2, fat-6, and fat-7 genes modulated fat synthesis; aak-2 and nhr-49 genes participated in fat consumption; and tub-1 gene regulated fat storage. However, fat-5 and acs-2 were downregulated in high-fat worms only, and vit-2 and lipl-4 were downregulated in normal worms only. Our study provided new insights into the role of PGG in alleviating fat accumulation and its underlying mechanism of action in C. elegans.
科研通智能强力驱动
Strongly Powered by AbleSci AI