渗透(战争)
盔甲
复合材料
结构工程
弹道冲击
轻气炮
弹头
冲击波
弹道极限
作者
Lu Yangyu,Qingming Zhang,Xue Yijiang,Xianghua Guo,Cheng Shang,Wenjin Liu,Siyuan Ren,Renrong Long
标识
DOI:10.1016/j.ijimpeng.2020.103742
摘要
Abstract Hypervelocity penetration experiments were performed on semi-infinite concrete targets with 7 mm-diameter 40CrNiMo steel long-rod projectiles at impact velocities ranging from 2117 m/s to 3086 m/s by using a two-stage combustion light-gas gun. After the experiments, the crater dimensions and penetration depth were carefully measured, also the residual projectiles were recovered. The depth of penetration was found to be greater than the hydrodynamic limit penetration depth. Numerical simulation was conducted to analyze the penetration process, and combined with the experimental results, it was obtained that the head of the long-rod projectile eroded and deformed into a hemisphere during hypervelocity penetration. According to the experimental and numerical simulation results, the penetration model of long-rod projectiles penetrating concrete targets at hypervelocity was constructed based on the Alekseevskii-Tate model. The penetration model was compared with the experimental depths of penetration, showing that the model had good applicability.
科研通智能强力驱动
Strongly Powered by AbleSci AI