A Modified Multi-Objective Particle Swarm Optimization Based on Levy Flight and Double-Archive Mechanism

局部最优 莱维航班 粒子群优化 数学优化 水准点(测量) 计算机科学 多群优化 元启发式 趋同(经济学) 局部搜索(优化) 集合(抽象数据类型) 跳跃 算法 数学 随机游动 统计 物理 大地测量学 量子力学 经济增长 经济 程序设计语言 地理
作者
Tianhua Guan,Fei Han,Henry Han
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 183444-183467 被引量:24
标识
DOI:10.1109/access.2019.2960472
摘要

In the past few decades, multi-objective particle swarm optimization (PSO) has increasingly attracted attention from scientists. To obtain a set of more accurate and well-distributed solutions, many variations of multi-objective PSO algorithms have been proposed. However, for complicated multi-objective problems, existing multi-objective PSO algorithms are prone to falling into local optima because of their weak global search capability. In this study, a modified multi-objective particle swarm optimization algorithm based on levy flight and double-archive mechanism (MOPSO-LFDA) is proposed to alleviate this problem. On one hand, in the evolution process of the particles, levy flight is combined with PSO to avoid the algorithm falling into local optima. By expanding the search scope of the particles, levy flight can improve the global search ability of the particles and make them jump out of local optima with a high probability. On the other hand, when maintaining external archives, in addition to the primary external archive, a secondary external archive is created to avoid unnecessary removal of the particles that may be generated by traditional maintenance approaches. With the proposed double-archive mechanism, more useful particles can be kept, and thus the diversity of the solutions is increased. Moreover, in terms of accelerating the convergence rate, a novel leader selection strategy is presented, which selects particles closer to the boundary of the attainable objective set and with larger crowding distance as leaders in optimization. The proposed algorithm outperforms existing state-of-the-art multi-objective algorithms on benchmark test functions for its fast convergence and excellent accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
吱吱发布了新的文献求助10
刚刚
1秒前
Evelyn完成签到 ,获得积分10
1秒前
4秒前
4秒前
5秒前
6秒前
开朗元槐发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
ding应助刻苦的士萧采纳,获得10
7秒前
科研通AI5应助英俊白莲采纳,获得30
8秒前
科研通AI5应助笑面客采纳,获得10
9秒前
9秒前
免疫与代谢研究完成签到,获得积分10
10秒前
weddcf发布了新的文献求助10
10秒前
10秒前
venger发布了新的文献求助10
11秒前
11秒前
wanci应助可yi采纳,获得10
11秒前
DZ发布了新的文献求助10
11秒前
12秒前
12秒前
sijin1216完成签到,获得积分10
12秒前
青春完成签到 ,获得积分10
13秒前
oo关注了科研通微信公众号
15秒前
烟花应助yema采纳,获得10
15秒前
15秒前
gaberella发布了新的文献求助10
16秒前
君君发布了新的文献求助10
16秒前
ikea1984发布了新的文献求助10
17秒前
852应助微笑采纳,获得10
17秒前
情怀应助微笑采纳,获得10
17秒前
华仔应助微笑采纳,获得10
17秒前
顾矜应助微笑采纳,获得10
17秒前
CipherSage应助微笑采纳,获得20
17秒前
无花果应助微笑采纳,获得10
17秒前
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769859
求助须知:如何正确求助?哪些是违规求助? 3314919
关于积分的说明 10174140
捐赠科研通 3030186
什么是DOI,文献DOI怎么找? 1662685
邀请新用户注册赠送积分活动 795067
科研通“疑难数据库(出版商)”最低求助积分说明 756560