医学
心脏病学
内科学
心力衰竭
肺楔压
射血分数保留的心力衰竭
射血分数
心脏磁共振成像
磁共振成像
心导管术
舒张期
血压
放射科
作者
Sören J. Backhaus,Torben Lange,Elisabeth L. George,Kristian Hellenkamp,Roman J. Gertz,Marcus Billing,Rolf Wachter,Michael P. Steinmetz,Shelby Kutty,Uwe Raaz,Joachim Lotz,Tim Friede,Martin Uecker,Gerd Hasenfuss,Tim Seidler,Andreas Schuster
出处
期刊:Circulation
[Ovid Technologies (Wolters Kluwer)]
日期:2021-04-13
卷期号:143 (15): 1484-1498
被引量:51
标识
DOI:10.1161/circulationaha.120.051542
摘要
Right heart catheterization using exercise stress is the reference standard for the diagnosis of heart failure with preserved ejection fraction (HFpEF) but carries the risk of the invasive procedure. We hypothesized that real-time cardiac magnetic resonance (RT-CMR) exercise imaging with pathophysiologic data at excellent temporal and spatial resolution may represent a contemporary noninvasive alternative for diagnosing HFpEF.The HFpEF-Stress trial (CMR Exercise Stress Testing in HFpEF; URL: https://www.clinicaltrials.gov; Unique identifier: NCT03260621. URL: https://dzhk.de/; Unique identifier: DZHK-17) prospectively recruited 75 patients with echocardiographic signs of diastolic dysfunction and dyspnea on exertion (E/e'>8, New York Heart Association class ≥II) to undergo echocardiography, right heart catheterization, and RT-CMR at rest and during exercise stress. HFpEF was defined according to pulmonary capillary wedge pressure (≥15 mm Hg at rest or ≥25 mm Hg during exercise stress). RT-CMR functional assessments included time-volume curves for total and early (1/3) diastolic left ventricular filling, left atrial (LA) emptying, and left ventricular/LA long axis strain.Patients with HFpEF (n=34; median pulmonary capillary wedge pressure at rest, 13 mm Hg; at stress, 27 mm Hg) had higher E/e' (12.5 versus 9.15), NT-proBNP (N-terminal pro-B-type natriuretic peptide; 255 versus 75 ng/L), and LA volume index (43.8 versus 36.2 mL/m2) compared with patients with noncardiac dyspnea (n=34; rest, 8 mm Hg; stress, 18 mm Hg; P≤0.001 for all). Seven patients were excluded because of the presence of non-HFpEF cardiac disease causing dyspnea on imaging. There were no differences in RT-CMR left ventricular total and early diastolic filling at rest and during exercise stress (P≥0.164) between patients with HFpEF and noncardiac dyspnea. RT-CMR revealed significantly impaired LA total and early (P<0.001) diastolic emptying in patients with HFpEF during exercise stress. RT-CMR exercise stress LA long axis strain was independently associated with HFpEF (adjusted odds ratio, 0.657 [95% CI, 0.516-0.838]; P=0.001) after adjustment for clinical and imaging measures and emerged as the best predictor for HFpEF (area under the curve at rest 0.82 versus exercise stress 0.93; P=0.029).RT-CMR allows highly accurate identification of HFpEF during physiologic exercise and qualifies as a suitable noninvasive diagnostic alternative. These results will need to be confirmed in multicenter prospective research studies to establish widespread routine clinical use. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03260621. URL: https://dzhk.de/; Unique identifier: DZHK-17.
科研通智能强力驱动
Strongly Powered by AbleSci AI