Clinical First-Trimester Prediction Models for Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis

妊娠期糖尿病 检查表 荟萃分析 医学 预测建模 怀孕 计算机科学 内科学 心理学 妊娠期 机器学习 遗传学 认知心理学 生物
作者
Qifang Huang,Yin-Chu Hu,Chong-Kun Wang,Jing Huang,Meidi Shen,Lihua Ren
出处
期刊:Biological Research For Nursing [SAGE Publishing]
卷期号:25 (2): 185-197 被引量:3
标识
DOI:10.1177/10998004221131993
摘要

Background Gestational diabetes mellitus (GDM) is a common pregnancy complication that negatively impacts the health of both the mother and child. Early prediction of the risk of GDM may permit prompt and effective interventions. This systematic review and meta-analysis aimed to summarize the study characteristics, methodological quality, and model performance of first-trimester prediction model studies for GDM. Methods Five electronic databases, one clinical trial register, and gray literature were searched from the inception date to March 19, 2022. Studies developing or validating a first-trimester prediction model for GDM were included. Two reviewers independently extracted data according to an established checklist and assessed the risk of bias by the Prediction Model Risk of Bias Assessment Tool (PROBAST). We used a random-effects model to perform a quantitative meta-analysis of the predictive power of models that were externally validated at least three times. Results We identified 43 model development studies, six model development and external validation studies, and five external validation-only studies. Body mass index, maternal age, and fasting plasma glucose were the most commonly included predictors across all models. Multiple estimates of performance measures were available for eight of the models. Summary estimates range from 0.68 to 0.78 (I 2 ranged from 0% to 97%). Conclusion Most studies were assessed as having a high overall risk of bias. Only eight prediction models for GDM have been externally validated at least three times. Future research needs to focus on updating and externally validating existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麻辣牛肉发布了新的文献求助10
刚刚
顾矜应助99采纳,获得10
1秒前
风趣的胜应助jimmyhjy采纳,获得10
1秒前
zz321完成签到,获得积分10
2秒前
yj1506837246发布了新的文献求助10
4秒前
奶昔发布了新的文献求助10
4秒前
歪西歪的完成签到,获得积分10
4秒前
积极的远山完成签到,获得积分10
5秒前
善学以致用应助小袁采纳,获得10
6秒前
哟哟哟完成签到,获得积分10
6秒前
光亮友安发布了新的文献求助10
7秒前
Jasper应助旗树树采纳,获得10
8秒前
8秒前
彦卿完成签到 ,获得积分10
9秒前
传奇3应助歪西歪的采纳,获得10
10秒前
Hello应助深情的采波采纳,获得10
11秒前
光速蜗牛完成签到,获得积分10
11秒前
乔er一完成签到,获得积分10
12秒前
沧笙踏歌应助麻辣牛肉采纳,获得10
12秒前
12秒前
12秒前
Akim应助wwl采纳,获得10
13秒前
13秒前
13秒前
14秒前
梦若浮生发布了新的文献求助10
14秒前
斯文败类应助负责莆采纳,获得10
14秒前
Owen应助小袁采纳,获得10
15秒前
15秒前
15秒前
乔er一发布了新的文献求助10
15秒前
pluto应助感动的念双采纳,获得10
16秒前
16秒前
16秒前
bkagyin应助淡淡夕阳采纳,获得10
16秒前
zjkzh发布了新的文献求助10
17秒前
sota发布了新的文献求助10
17秒前
17秒前
上官若男应助小吃惑采纳,获得10
17秒前
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958693
求助须知:如何正确求助?哪些是违规求助? 3504939
关于积分的说明 11121216
捐赠科研通 3236311
什么是DOI,文献DOI怎么找? 1788726
邀请新用户注册赠送积分活动 871307
科研通“疑难数据库(出版商)”最低求助积分说明 802691