Clinical First-Trimester Prediction Models for Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis

妊娠期糖尿病 检查表 荟萃分析 医学 预测建模 怀孕 计算机科学 内科学 心理学 妊娠期 机器学习 遗传学 生物 认知心理学
作者
Qifang Huang,Yin-Chu Hu,Chong-Kun Wang,Jing Huang,Meidi Shen,Lihua Ren
出处
期刊:Biological Research For Nursing [SAGE]
卷期号:25 (2): 185-197 被引量:1
标识
DOI:10.1177/10998004221131993
摘要

Background Gestational diabetes mellitus (GDM) is a common pregnancy complication that negatively impacts the health of both the mother and child. Early prediction of the risk of GDM may permit prompt and effective interventions. This systematic review and meta-analysis aimed to summarize the study characteristics, methodological quality, and model performance of first-trimester prediction model studies for GDM. Methods Five electronic databases, one clinical trial register, and gray literature were searched from the inception date to March 19, 2022. Studies developing or validating a first-trimester prediction model for GDM were included. Two reviewers independently extracted data according to an established checklist and assessed the risk of bias by the Prediction Model Risk of Bias Assessment Tool (PROBAST). We used a random-effects model to perform a quantitative meta-analysis of the predictive power of models that were externally validated at least three times. Results We identified 43 model development studies, six model development and external validation studies, and five external validation-only studies. Body mass index, maternal age, and fasting plasma glucose were the most commonly included predictors across all models. Multiple estimates of performance measures were available for eight of the models. Summary estimates range from 0.68 to 0.78 (I 2 ranged from 0% to 97%). Conclusion Most studies were assessed as having a high overall risk of bias. Only eight prediction models for GDM have been externally validated at least three times. Future research needs to focus on updating and externally validating existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好难啊发布了新的文献求助10
1秒前
1秒前
5秒前
6秒前
6秒前
wewe完成签到,获得积分20
7秒前
李大爷发布了新的文献求助10
7秒前
Kevin完成签到,获得积分10
9秒前
酷炫的尔丝完成签到 ,获得积分10
9秒前
Hello应助标致的蛋挞采纳,获得50
10秒前
大个应助明亮的宁采纳,获得10
11秒前
Rainbow发布了新的文献求助10
11秒前
anyone发布了新的文献求助30
12秒前
充电宝应助SY采纳,获得10
13秒前
D先生完成签到,获得积分20
13秒前
yxt完成签到,获得积分10
13秒前
momo发布了新的文献求助10
14秒前
16秒前
苏照杭应助长度2到采纳,获得10
16秒前
17秒前
次我完成签到,获得积分10
17秒前
qisili关注了科研通微信公众号
18秒前
Owen应助李大爷采纳,获得10
19秒前
20秒前
脑洞疼应助迅速冰岚采纳,获得10
22秒前
NexusExplorer应助whoops采纳,获得10
22秒前
sweetbearm应助通~采纳,获得10
22秒前
VDC应助欢呼冰岚采纳,获得30
22秒前
Grayball应助hhl采纳,获得10
22秒前
充电宝应助次我采纳,获得10
23秒前
sgjj33发布了新的文献求助10
24秒前
墨墨完成签到,获得积分10
25秒前
蒸馏水完成签到,获得积分10
25秒前
123完成签到,获得积分10
25秒前
李大爷完成签到,获得积分10
26秒前
SY发布了新的文献求助10
26秒前
journey完成签到 ,获得积分10
30秒前
kaw发布了新的文献求助10
30秒前
彭于晏应助hdd采纳,获得10
33秒前
感性的寄真完成签到 ,获得积分10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851