亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Clinical First-Trimester Prediction Models for Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis

妊娠期糖尿病 检查表 荟萃分析 医学 预测建模 怀孕 计算机科学 内科学 心理学 妊娠期 机器学习 遗传学 生物 认知心理学
作者
Qifang Huang,Yin-Chu Hu,Chong-Kun Wang,Jing Huang,Meidi Shen,Lihua Ren
出处
期刊:Biological Research For Nursing [SAGE]
卷期号:25 (2): 185-197 被引量:1
标识
DOI:10.1177/10998004221131993
摘要

Background Gestational diabetes mellitus (GDM) is a common pregnancy complication that negatively impacts the health of both the mother and child. Early prediction of the risk of GDM may permit prompt and effective interventions. This systematic review and meta-analysis aimed to summarize the study characteristics, methodological quality, and model performance of first-trimester prediction model studies for GDM. Methods Five electronic databases, one clinical trial register, and gray literature were searched from the inception date to March 19, 2022. Studies developing or validating a first-trimester prediction model for GDM were included. Two reviewers independently extracted data according to an established checklist and assessed the risk of bias by the Prediction Model Risk of Bias Assessment Tool (PROBAST). We used a random-effects model to perform a quantitative meta-analysis of the predictive power of models that were externally validated at least three times. Results We identified 43 model development studies, six model development and external validation studies, and five external validation-only studies. Body mass index, maternal age, and fasting plasma glucose were the most commonly included predictors across all models. Multiple estimates of performance measures were available for eight of the models. Summary estimates range from 0.68 to 0.78 (I 2 ranged from 0% to 97%). Conclusion Most studies were assessed as having a high overall risk of bias. Only eight prediction models for GDM have been externally validated at least three times. Future research needs to focus on updating and externally validating existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优秀夏天关注了科研通微信公众号
刚刚
11秒前
优秀夏天发布了新的文献求助10
17秒前
amengptsd完成签到,获得积分10
17秒前
阿文发布了新的文献求助10
21秒前
我是老大应助阿文采纳,获得30
40秒前
巴山石也完成签到 ,获得积分10
40秒前
DrW1111完成签到,获得积分10
45秒前
efren1806完成签到,获得积分10
47秒前
shimly0101xx完成签到,获得积分10
50秒前
传奇3应助sun采纳,获得10
51秒前
hhhhhhh完成签到,获得积分10
51秒前
DreamMaker完成签到 ,获得积分10
53秒前
小于完成签到,获得积分10
53秒前
优秀夏天完成签到,获得积分10
59秒前
ccc完成签到 ,获得积分10
1分钟前
欣慰的乌冬面完成签到,获得积分10
1分钟前
李健应助LL采纳,获得10
1分钟前
1分钟前
1分钟前
彭于晏应助科研通管家采纳,获得30
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
SciGPT应助余德熙采纳,获得10
1分钟前
1分钟前
风趣含双完成签到,获得积分20
1分钟前
阿文发布了新的文献求助30
1分钟前
刘敏完成签到 ,获得积分10
1分钟前
支翰完成签到 ,获得积分10
2分钟前
科研通AI2S应助森林木采纳,获得10
2分钟前
sylvia完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
余德熙发布了新的文献求助10
2分钟前
余德熙完成签到,获得积分10
2分钟前
2分钟前
小龙完成签到,获得积分10
2分钟前
CodeCraft应助阿文采纳,获得10
2分钟前
情怀应助DrW1111采纳,获得10
2分钟前
atdawn1998发布了新的文献求助20
2分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139509
求助须知:如何正确求助?哪些是违规求助? 2790383
关于积分的说明 7795098
捐赠科研通 2446823
什么是DOI,文献DOI怎么找? 1301450
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146