亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Clinical First-Trimester Prediction Models for Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis

妊娠期糖尿病 检查表 荟萃分析 医学 预测建模 怀孕 计算机科学 内科学 心理学 妊娠期 机器学习 遗传学 生物 认知心理学
作者
Qifang Huang,Yin-Chu Hu,Chong-Kun Wang,Jing Huang,Meidi Shen,Lihua Ren
出处
期刊:Biological Research For Nursing [SAGE]
卷期号:25 (2): 185-197 被引量:3
标识
DOI:10.1177/10998004221131993
摘要

Background Gestational diabetes mellitus (GDM) is a common pregnancy complication that negatively impacts the health of both the mother and child. Early prediction of the risk of GDM may permit prompt and effective interventions. This systematic review and meta-analysis aimed to summarize the study characteristics, methodological quality, and model performance of first-trimester prediction model studies for GDM. Methods Five electronic databases, one clinical trial register, and gray literature were searched from the inception date to March 19, 2022. Studies developing or validating a first-trimester prediction model for GDM were included. Two reviewers independently extracted data according to an established checklist and assessed the risk of bias by the Prediction Model Risk of Bias Assessment Tool (PROBAST). We used a random-effects model to perform a quantitative meta-analysis of the predictive power of models that were externally validated at least three times. Results We identified 43 model development studies, six model development and external validation studies, and five external validation-only studies. Body mass index, maternal age, and fasting plasma glucose were the most commonly included predictors across all models. Multiple estimates of performance measures were available for eight of the models. Summary estimates range from 0.68 to 0.78 (I 2 ranged from 0% to 97%). Conclusion Most studies were assessed as having a high overall risk of bias. Only eight prediction models for GDM have been externally validated at least three times. Future research needs to focus on updating and externally validating existing models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cuicui完成签到,获得积分10
18秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
26秒前
一只鲨呱发布了新的文献求助10
26秒前
追寻依波完成签到,获得积分10
27秒前
29秒前
yishujia发布了新的文献求助30
30秒前
活力广缘发布了新的文献求助20
33秒前
Y123发布了新的文献求助10
33秒前
xaopng完成签到,获得积分10
38秒前
爆米花应助shier采纳,获得10
39秒前
活力广缘完成签到,获得积分10
41秒前
左传琦完成签到 ,获得积分10
58秒前
NOTHING完成签到 ,获得积分10
1分钟前
1分钟前
吞吞完成签到 ,获得积分10
1分钟前
慧灰huihui发布了新的文献求助10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
英俊的铭应助慧灰huihui采纳,获得10
1分钟前
Jy完成签到 ,获得积分10
1分钟前
curtain完成签到,获得积分10
1分钟前
清飏应助karstbing采纳,获得220
1分钟前
田様应助Y123采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
今后应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Y123发布了新的文献求助10
2分钟前
2分钟前
领导范儿应助Y123采纳,获得10
2分钟前
平淡如天完成签到,获得积分10
2分钟前
caca完成签到,获得积分0
2分钟前
2分钟前
yishujia完成签到,获得积分20
2分钟前
April发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634800
求助须知:如何正确求助?哪些是违规求助? 4733832
关于积分的说明 14989260
捐赠科研通 4792487
什么是DOI,文献DOI怎么找? 2559621
邀请新用户注册赠送积分活动 1519959
关于科研通互助平台的介绍 1480023