Interstitial lung abnormalities (ILA) on routine chest CT: Comparison of radiologists’ visual evaluation and automated quantification

医学 放射科 假阳性悖论 核医学 异常 回顾性队列研究 外科 人工智能 内科学 精神科 计算机科学
作者
Min Seon Kim,Jooae Choe,Hye Jeon Hwang,Sang Min Lee,Jihye Yun,Namkug Kim,Myung‐Su Ko,Jaeyoun Yi,Donghoon Yu,Joon Beom Seo
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:157: 110564-110564 被引量:23
标识
DOI:10.1016/j.ejrad.2022.110564
摘要

We aimed to evaluate the performance of a fully automated quantitative software in detecting interstitial lung abnormalities (ILA) according to the Fleischner Society guidelines on routine chest CT compared with radiologists' visual analysis.This retrospective single-centre study included participants with ILA findings and 1:2 matched controls who underwent routine chest CT using various CT protocols for health screening. Two thoracic radiologists independently reviewed the CT images using the Fleischner Society guidelines. We developed a fully automated quantitative tool for detecting ILA by modifying deep learning-based quantification of interstitial lung disease and evaluated its performance using the radiologists' consensus for ILA as a reference standard.A total of 336 participants (mean age, 70.5 ± 6.1 years; M:F = 282:54) were included. Inter-reader agreements were substantial for the presence of ILA (weighted κ, 0.74) and fair for its subtypes (weighted κ, 0.38). The quantification system for identifying ILA using a threshold of 5 % in at least one zone showed 67.6 % sensitivity, 93.3 % specificity, and 90.5 % accuracy. Eight of 20 (40 %) false positives identified by the system were underestimated by readers for ILA extent. Contrast-enhancement in a certain vendor and suboptimal inspiration caused a true false-positive on the system (all P < 0.05). The best cut-off value of abnormality extent detecting ILA on the system was 3.6 % (sensitivity, 84.8 %; specificity 92.4 %).Inter-reader agreement was substantial for ILA but only fair for its subtypes. Applying an automated quantification system in routine clinical practice may aid the objective identification of ILA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Huco完成签到,获得积分10
1秒前
松花蛋完成签到,获得积分10
3秒前
谁也认不出我略略略完成签到,获得积分10
4秒前
4秒前
Akim应助碧蓝的鹏煊采纳,获得10
5秒前
淀粉肠发布了新的文献求助20
6秒前
liu完成签到 ,获得积分10
8秒前
xt发布了新的文献求助10
9秒前
清逸之风发布了新的文献求助10
9秒前
11秒前
刚国忠发布了新的文献求助10
11秒前
12秒前
Whc完成签到,获得积分10
13秒前
17秒前
fjmelite发布了新的文献求助10
17秒前
今后应助刘二狗采纳,获得10
18秒前
racill发布了新的文献求助10
18秒前
伯爵的猫应助evilbatuu采纳,获得10
18秒前
19秒前
20秒前
123123发布了新的文献求助10
25秒前
SSSSCCCCIIII完成签到,获得积分10
26秒前
英俊的铭应助临澈采纳,获得10
26秒前
独特的尔风完成签到,获得积分10
27秒前
碧蓝的鹏煊完成签到,获得积分10
29秒前
明亮涫完成签到,获得积分10
31秒前
NexusExplorer应助123123采纳,获得10
31秒前
77完成签到,获得积分20
34秒前
123完成签到,获得积分10
35秒前
丘比特应助刚国忠采纳,获得10
37秒前
38秒前
学习完成签到 ,获得积分10
39秒前
40秒前
高高的书雁完成签到,获得积分10
40秒前
77发布了新的文献求助10
40秒前
42秒前
Lemon发布了新的文献求助10
43秒前
Rondab应助奇奇淼采纳,获得10
43秒前
44秒前
46秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999331
求助须知:如何正确求助?哪些是违规求助? 3538658
关于积分的说明 11274856
捐赠科研通 3277581
什么是DOI,文献DOI怎么找? 1807615
邀请新用户注册赠送积分活动 883967
科研通“疑难数据库(出版商)”最低求助积分说明 810101