Interstitial lung abnormalities (ILA) on routine chest CT: Comparison of radiologists’ visual evaluation and automated quantification

医学 放射科 假阳性悖论 间质性肺病 核医学 异常 人工智能 内科学 精神科 计算机科学
作者
Min Seon Kim,Jooae Choe,Hye Jeon Hwang,Sang Min Lee,Jihye Yun,Namkug Kim,Myung S. Ko,Jaeyoun Yi,Donghoon Yu,Joon Beom Seo
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:157: 110564-110564 被引量:18
标识
DOI:10.1016/j.ejrad.2022.110564
摘要

We aimed to evaluate the performance of a fully automated quantitative software in detecting interstitial lung abnormalities (ILA) according to the Fleischner Society guidelines on routine chest CT compared with radiologists' visual analysis.This retrospective single-centre study included participants with ILA findings and 1:2 matched controls who underwent routine chest CT using various CT protocols for health screening. Two thoracic radiologists independently reviewed the CT images using the Fleischner Society guidelines. We developed a fully automated quantitative tool for detecting ILA by modifying deep learning-based quantification of interstitial lung disease and evaluated its performance using the radiologists' consensus for ILA as a reference standard.A total of 336 participants (mean age, 70.5 ± 6.1 years; M:F = 282:54) were included. Inter-reader agreements were substantial for the presence of ILA (weighted κ, 0.74) and fair for its subtypes (weighted κ, 0.38). The quantification system for identifying ILA using a threshold of 5 % in at least one zone showed 67.6 % sensitivity, 93.3 % specificity, and 90.5 % accuracy. Eight of 20 (40 %) false positives identified by the system were underestimated by readers for ILA extent. Contrast-enhancement in a certain vendor and suboptimal inspiration caused a true false-positive on the system (all P < 0.05). The best cut-off value of abnormality extent detecting ILA on the system was 3.6 % (sensitivity, 84.8 %; specificity 92.4 %).Inter-reader agreement was substantial for ILA but only fair for its subtypes. Applying an automated quantification system in routine clinical practice may aid the objective identification of ILA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
调皮的萃完成签到,获得积分10
1秒前
kangwer完成签到,获得积分10
1秒前
我是屈原在世完成签到,获得积分10
2秒前
董科研严发布了新的文献求助10
3秒前
zero完成签到,获得积分10
3秒前
秋天发布了新的文献求助10
3秒前
园yuan发布了新的文献求助30
6秒前
corazon完成签到,获得积分10
6秒前
神勇的冬瓜完成签到,获得积分10
6秒前
粱乘风完成签到,获得积分10
7秒前
彭a发布了新的文献求助10
7秒前
theyulong关注了科研通微信公众号
9秒前
董科研严完成签到,获得积分10
10秒前
10秒前
在水一方应助xzc采纳,获得10
10秒前
10秒前
稳重的若雁应助左左采纳,获得10
12秒前
华仔应助猫想飞采纳,获得10
12秒前
13秒前
元谷雪应助聪明的宛菡采纳,获得10
13秒前
14秒前
CodeCraft应助三叔采纳,获得10
15秒前
Xander完成签到,获得积分10
18秒前
18秒前
入门的橙橙完成签到 ,获得积分10
18秒前
隐形曼青应助中国好青年采纳,获得10
19秒前
园yuan完成签到,获得积分20
19秒前
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
小周小周完成签到,获得积分10
19秒前
爆米花应助科研通管家采纳,获得10
20秒前
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
共享精神应助科研通管家采纳,获得10
20秒前
酷波er应助科研通管家采纳,获得10
20秒前
乐乐应助科研通管家采纳,获得10
20秒前
Jasper应助科研通管家采纳,获得10
20秒前
彭于晏应助科研通管家采纳,获得10
20秒前
Hello应助科研通管家采纳,获得10
20秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137944
求助须知:如何正确求助?哪些是违规求助? 2788863
关于积分的说明 7788861
捐赠科研通 2445259
什么是DOI,文献DOI怎么找? 1300236
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046