Penalized joint models of high-dimensional longitudinal biomarkers and a survival outcome

结果(博弈论) 接头(建筑物) 医学 计量经济学 内科学 数学 工程类 数理经济学 建筑工程
作者
Jiehuan Sun,Sanjib Basu
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:18 (2) 被引量:2
标识
DOI:10.1214/23-aoas1844
摘要

High-dimensional biomarkers, such as gene expression profiles, are often collected longitudinally to monitor disease progression in clinical studies, where the primary endpoint of interest is often a survival outcome. It is of great interest to study the associations between high-dimensional longitudinal biomarkers and the survival outcome as well as to identify biomarkers related to the survival outcome. Joint models, which have been extensively studied in the past decades, are commonly used to study the associations between longitudinal biomarkers and the survival outcome. However, existing joint models only consider one or a few longitudinal biomarkers and cannot deal with high-dimensional longitudinal biomarkers. In this paper we propose a novel penalized joint model that can handle high-dimensional longitudinal biomarkers. Specifically, we impose an adaptive lasso penalty on the parameters for the effects of the longitudinal biomarkers on the survival outcome, which allows for variable selection. We also develop a computationally efficient algorithm for model estimation based on the Gaussian variational approximation method, which can be implemented using the HDJM package in R. Furthermore, based on the penalized joint model, we propose a two-stage selection procedure that can reduce the estimation bias, due to the penalization, and allows for inference. We conduct extensive simulation studies to evaluate the performance of our proposed method. The performance of our proposed method is further demonstrated on a longitudinal gene expression dataset of patients with idiopathic pulmonary fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大傻子完成签到,获得积分10
1秒前
xiaomengzi发布了新的文献求助10
2秒前
嘿111发布了新的文献求助10
2秒前
椰子水完成签到 ,获得积分10
3秒前
4秒前
火锅完成签到,获得积分10
4秒前
炖地瓜完成签到 ,获得积分10
4秒前
WNing发布了新的文献求助30
5秒前
汉堡包应助123y采纳,获得10
5秒前
6秒前
七七完成签到 ,获得积分10
6秒前
科研通AI6应助Ruoru采纳,获得10
7秒前
infinite发布了新的文献求助10
7秒前
7秒前
doudou完成签到 ,获得积分10
8秒前
ljy1111发布了新的文献求助10
9秒前
SciGPT应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
Criminology34应助科研通管家采纳,获得20
10秒前
Twonej应助科研通管家采纳,获得200
10秒前
Criminology34应助科研通管家采纳,获得10
10秒前
蓝天应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
核动力驴应助科研通管家采纳,获得10
10秒前
乐空思应助科研通管家采纳,获得10
10秒前
乐空思应助科研通管家采纳,获得10
10秒前
乐空思应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
Luna_aaa应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
Criminology34应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
11秒前
核动力驴应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
Criminology34应助科研通管家采纳,获得10
11秒前
蓝天应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643722
求助须知:如何正确求助?哪些是违规求助? 4761848
关于积分的说明 15022054
捐赠科研通 4801980
什么是DOI,文献DOI怎么找? 2567203
邀请新用户注册赠送积分活动 1524860
关于科研通互助平台的介绍 1484451