亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Penalized joint models of high-dimensional longitudinal biomarkers and a survival outcome

结果(博弈论) 接头(建筑物) 医学 计量经济学 内科学 数学 工程类 数理经济学 建筑工程
作者
Jiehuan Sun,Sanjib Basu
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:18 (2) 被引量:2
标识
DOI:10.1214/23-aoas1844
摘要

High-dimensional biomarkers, such as gene expression profiles, are often collected longitudinally to monitor disease progression in clinical studies, where the primary endpoint of interest is often a survival outcome. It is of great interest to study the associations between high-dimensional longitudinal biomarkers and the survival outcome as well as to identify biomarkers related to the survival outcome. Joint models, which have been extensively studied in the past decades, are commonly used to study the associations between longitudinal biomarkers and the survival outcome. However, existing joint models only consider one or a few longitudinal biomarkers and cannot deal with high-dimensional longitudinal biomarkers. In this paper we propose a novel penalized joint model that can handle high-dimensional longitudinal biomarkers. Specifically, we impose an adaptive lasso penalty on the parameters for the effects of the longitudinal biomarkers on the survival outcome, which allows for variable selection. We also develop a computationally efficient algorithm for model estimation based on the Gaussian variational approximation method, which can be implemented using the HDJM package in R. Furthermore, based on the penalized joint model, we propose a two-stage selection procedure that can reduce the estimation bias, due to the penalization, and allows for inference. We conduct extensive simulation studies to evaluate the performance of our proposed method. The performance of our proposed method is further demonstrated on a longitudinal gene expression dataset of patients with idiopathic pulmonary fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
18秒前
29秒前
30秒前
34秒前
zhangdoc发布了新的文献求助10
34秒前
35秒前
40秒前
开放道天发布了新的文献求助10
40秒前
zhangdoc完成签到,获得积分20
42秒前
43秒前
Founder发布了新的文献求助10
47秒前
Founder完成签到,获得积分10
53秒前
54秒前
flyinthesky完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Lee发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
菠萝发布了新的文献求助10
1分钟前
可靠的寒风完成签到,获得积分10
1分钟前
endure发布了新的文献求助10
1分钟前
张晓祁完成签到,获得积分10
1分钟前
安详的从筠完成签到,获得积分10
1分钟前
1分钟前
Lucas应助忐忑的黄豆采纳,获得10
1分钟前
yueying完成签到,获得积分10
1分钟前
HH发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
fcycukvujblk发布了新的文献求助10
1分钟前
村长发布了新的文献求助10
1分钟前
时尚的萝发布了新的文献求助10
2分钟前
JJBOND发布了新的文献求助10
2分钟前
wanci应助时尚的萝采纳,获得10
2分钟前
2分钟前
2分钟前
Akim应助solitude采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664226
求助须知:如何正确求助?哪些是违规求助? 4859183
关于积分的说明 15107314
捐赠科研通 4822719
什么是DOI,文献DOI怎么找? 2581666
邀请新用户注册赠送积分活动 1535885
关于科研通互助平台的介绍 1494101