Penalized joint models of high-dimensional longitudinal biomarkers and a survival outcome

结果(博弈论) 接头(建筑物) 医学 计量经济学 内科学 数学 工程类 数理经济学 建筑工程
作者
Jiehuan Sun,Sanjib Basu
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:18 (2) 被引量:2
标识
DOI:10.1214/23-aoas1844
摘要

High-dimensional biomarkers, such as gene expression profiles, are often collected longitudinally to monitor disease progression in clinical studies, where the primary endpoint of interest is often a survival outcome. It is of great interest to study the associations between high-dimensional longitudinal biomarkers and the survival outcome as well as to identify biomarkers related to the survival outcome. Joint models, which have been extensively studied in the past decades, are commonly used to study the associations between longitudinal biomarkers and the survival outcome. However, existing joint models only consider one or a few longitudinal biomarkers and cannot deal with high-dimensional longitudinal biomarkers. In this paper we propose a novel penalized joint model that can handle high-dimensional longitudinal biomarkers. Specifically, we impose an adaptive lasso penalty on the parameters for the effects of the longitudinal biomarkers on the survival outcome, which allows for variable selection. We also develop a computationally efficient algorithm for model estimation based on the Gaussian variational approximation method, which can be implemented using the HDJM package in R. Furthermore, based on the penalized joint model, we propose a two-stage selection procedure that can reduce the estimation bias, due to the penalization, and allows for inference. We conduct extensive simulation studies to evaluate the performance of our proposed method. The performance of our proposed method is further demonstrated on a longitudinal gene expression dataset of patients with idiopathic pulmonary fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wasb131关注了科研通微信公众号
1秒前
1秒前
米亚完成签到 ,获得积分10
1秒前
传奇3应助是莉莉娅采纳,获得10
1秒前
啊啊啊啊发布了新的文献求助30
2秒前
3秒前
zxy发布了新的文献求助10
3秒前
友好谷蓝发布了新的文献求助10
3秒前
wxy发布了新的文献求助10
3秒前
李爱国应助小西采纳,获得10
5秒前
慕青应助HM采纳,获得10
5秒前
5秒前
wggggggy关注了科研通微信公众号
5秒前
小杭杭弟完成签到,获得积分10
5秒前
传奇3应助潮汐采纳,获得10
6秒前
6秒前
6秒前
sunshine发布了新的文献求助10
6秒前
6秒前
dddd完成签到,获得积分10
7秒前
7秒前
何必在乎发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
9秒前
酷炫翠柏发布了新的文献求助10
10秒前
10秒前
烟花应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
61发布了新的文献求助10
10秒前
传奇3应助123采纳,获得10
10秒前
LewisAcid应助科研通管家采纳,获得20
10秒前
10秒前
niNe3YUE应助科研通管家采纳,获得10
10秒前
烟花应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711378
求助须知:如何正确求助?哪些是违规求助? 5203436
关于积分的说明 15264067
捐赠科研通 4863675
什么是DOI,文献DOI怎么找? 2610868
邀请新用户注册赠送积分活动 1561184
关于科研通互助平台的介绍 1518621