Penalized joint models of high-dimensional longitudinal biomarkers and a survival outcome

结果(博弈论) 接头(建筑物) 医学 计量经济学 内科学 数学 工程类 数理经济学 建筑工程
作者
Jiehuan Sun,Sanjib Basu
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:18 (2) 被引量:2
标识
DOI:10.1214/23-aoas1844
摘要

High-dimensional biomarkers, such as gene expression profiles, are often collected longitudinally to monitor disease progression in clinical studies, where the primary endpoint of interest is often a survival outcome. It is of great interest to study the associations between high-dimensional longitudinal biomarkers and the survival outcome as well as to identify biomarkers related to the survival outcome. Joint models, which have been extensively studied in the past decades, are commonly used to study the associations between longitudinal biomarkers and the survival outcome. However, existing joint models only consider one or a few longitudinal biomarkers and cannot deal with high-dimensional longitudinal biomarkers. In this paper we propose a novel penalized joint model that can handle high-dimensional longitudinal biomarkers. Specifically, we impose an adaptive lasso penalty on the parameters for the effects of the longitudinal biomarkers on the survival outcome, which allows for variable selection. We also develop a computationally efficient algorithm for model estimation based on the Gaussian variational approximation method, which can be implemented using the HDJM package in R. Furthermore, based on the penalized joint model, we propose a two-stage selection procedure that can reduce the estimation bias, due to the penalization, and allows for inference. We conduct extensive simulation studies to evaluate the performance of our proposed method. The performance of our proposed method is further demonstrated on a longitudinal gene expression dataset of patients with idiopathic pulmonary fibrosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西门问道发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
华仔应助俊鱼采纳,获得10
2秒前
2秒前
含羞草发布了新的文献求助10
2秒前
有魅力的香烟完成签到,获得积分20
3秒前
Peter11455发布了新的文献求助10
4秒前
歪歪yyyyc完成签到,获得积分10
5秒前
AmyDong发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
ddd完成签到,获得积分10
6秒前
6秒前
7秒前
10秒前
柚被啊呜一口完成签到,获得积分10
10秒前
十二月发布了新的文献求助10
11秒前
11秒前
ago发布了新的文献求助10
12秒前
酷波er应助语音助手采纳,获得10
12秒前
13秒前
13秒前
sunfield2014完成签到 ,获得积分10
13秒前
追寻筮完成签到,获得积分10
13秒前
偏执发布了新的文献求助10
13秒前
嗯嗯完成签到 ,获得积分10
14秒前
负责乐曲完成签到,获得积分10
14秒前
隐形曼青应助关正卿采纳,获得10
15秒前
顾天与发布了新的文献求助10
15秒前
王盼盼发布了新的文献求助10
17秒前
负责乐曲发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
研友_VZG7GZ应助Sandy采纳,获得10
18秒前
研友_VZG7GZ应助代沁采纳,获得10
18秒前
科研通AI6.1应助yanifang采纳,获得10
19秒前
科研通AI6.1应助yanifang采纳,获得10
19秒前
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743471
求助须知:如何正确求助?哪些是违规求助? 5414214
关于积分的说明 15347603
捐赠科研通 4884202
什么是DOI,文献DOI怎么找? 2625645
邀请新用户注册赠送积分活动 1574504
关于科研通互助平台的介绍 1531414