Semantics Disentangling for Cross-modal Retrieval

计算机科学 语义学(计算机科学) 亲密度 人工智能 自然语言处理 情报检索 理论计算机科学 数学 程序设计语言 数学分析
作者
Zheng Wang,Xing Xu,Jiwei Wei,Ning Xie,Yang Yang,Heng Tao Shen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tip.2024.3374111
摘要

Cross-modal retrieval (e.g., query a given image to obtain a semantically similar sentence, and vice versa) is an important but challenging task, as the heterogeneous gap and inconsistent distributions exist between different modalities. The dominant approaches struggle to bridge the heterogeneity by capturing the common representations among heterogeneous data in a constructed subspace which can reflect the semantic closeness. However, insufficient consideration is taken into the fact that learned latent representations are actually heavily entangled with those semantic-unrelated features, which obviously further compounds the challenges of cross-modal retrieval. To alleviate the difficulty, this work makes an assumption that the data are jointly characterized by two independent features: semantic-shared and semantic-unrelated representations. The former presents characteristics of consistent semantics shared by different modalities, while the latter reflects the characteristics with respect to the modality yet unrelated to semantics, such as background, illumination, and other low-level information. Therefore, this paper aims to disentangle the shared semantics from the entangled features, andthus the purer semantic representation can promote the closeness of paired data. Specifically, this paper designs a novel Semantics Disentangling approach for Cross-Modal Retrieval (termed as SDCMR) to explicitly decouple the two different features based on variational auto-encoder. Next, the reconstruction is performed by exchanging shared semantics to ensure the learning of semantic consistency. Moreover, a dual adversarial mechanism is designed to disentangle the two independent features via a pushing-and-pulling strategy. Comprehensive experiments on four widely used datasets demonstrate the effectiveness and superiority of the proposed SDCMR method by achieving a new bar on performance when compared against 15 state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助Summer采纳,获得10
1秒前
1秒前
SUN完成签到,获得积分20
2秒前
爱笑雪糕发布了新的文献求助10
5秒前
6秒前
Hehe发布了新的文献求助10
7秒前
8秒前
9秒前
安详过客发布了新的文献求助10
10秒前
我是老大应助不安的凝阳采纳,获得10
10秒前
cctv18应助端庄的冷雁采纳,获得10
11秒前
susiyiyi完成签到,获得积分10
12秒前
lalal发布了新的文献求助10
12秒前
脑洞疼应助tkdzjr12345采纳,获得10
14秒前
zhouyi发布了新的文献求助10
14秒前
sunshine发布了新的文献求助10
15秒前
霸气的小叮当完成签到,获得积分10
16秒前
善学以致用应助Joker采纳,获得10
16秒前
17秒前
小蘑菇应助风中寄云采纳,获得10
19秒前
21秒前
大模型应助zhouyi采纳,获得10
21秒前
爱笑雪糕完成签到,获得积分10
22秒前
硕小牛完成签到,获得积分10
22秒前
23秒前
香蕉觅云应助huzj采纳,获得10
23秒前
23秒前
科研通AI2S应助lzc采纳,获得10
25秒前
宓广缘完成签到 ,获得积分10
26秒前
tkdzjr12345发布了新的文献求助10
27秒前
水下月发布了新的文献求助10
28秒前
情怀应助董世英采纳,获得30
28秒前
xu发布了新的文献求助10
28秒前
liushuoshuoliu完成签到,获得积分10
29秒前
柠檬柚子晴完成签到,获得积分10
29秒前
山河完成签到,获得积分10
29秒前
huzj完成签到,获得积分10
29秒前
30秒前
Marciu33发布了新的文献求助30
31秒前
追云断月发布了新的文献求助10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3322285
求助须知:如何正确求助?哪些是违规求助? 2953590
关于积分的说明 8566088
捐赠科研通 2631128
什么是DOI,文献DOI怎么找? 1439660
科研通“疑难数据库(出版商)”最低求助积分说明 667171
邀请新用户注册赠送积分活动 653598