Predictive method of pressure loss in wet clutch caused by seal wear based on stacking ensemble learning

活塞环 离合器 泄漏(经济) 印章(徽章) 过度拟合 圆柱 模拟 材料科学 计算机科学 工程类 戒指(化学) 机械工程 机器学习 人工神经网络 艺术 化学 有机化学 视觉艺术 经济 宏观经济学
作者
Ran Gong,Fengming Sun,Cheng Wang,He Zhang
标识
DOI:10.1177/09544070241247369
摘要

The harsh operating conditions of heavy-duty vehicles accelerates the wear of the sealing ring in the transmission, leading to increased oil leakage and a reduction of the operating pressure in the piston cylinder of wet clutch. This impairs the proper functioning of the transmission in the heavy-duty vehicle. Therefore, it is necessary to predict the pressure loss inside the transmission quickly and effectively after the wear of the sealing ring. The wear of the sealing ring under different operating conditions is calculated through the modified Archard model. The relationship between the oil leakage and pressure loss after the wear of the sealing ring is analyzed using Fluent software. The analysis involves the effects of different wear levels of the sealing ring. The simulation results are validated through a high-speed oil cylinder performance test rig. Based on the validated simulation data and test data, a prediction model for pressure loss is established by using stacking ensemble learning with MLR (multiple linear regression), DTR (decision tree regression), and SVR (support vector regression) as the base learners and RF (random forest) as the meta-learner. The risk of model overfitting is reduced through k-fold cross-validation. The research results indicate that the fused stacking ensemble learning algorithm fully utilizes the advantages of each base learner and can effectively predict the pressure loss after the wear of the sealing ring, and achieve a higher accuracy. The establishment of this model provides theoretical support for real-time prediction of pressure loss after the wear of the sealing ring in actual heavy-duty vehicles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
明亮的lunacake完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
jasmine发布了新的文献求助10
1秒前
1秒前
orixero应助Andrew采纳,获得10
1秒前
阿花完成签到,获得积分10
1秒前
凉笙墨染完成签到,获得积分10
2秒前
小马甲应助grata采纳,获得10
2秒前
生而追梦不止完成签到,获得积分10
2秒前
酷波er应助科研通管家采纳,获得30
2秒前
黑猫乾杯应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
SU15964707813完成签到,获得积分10
3秒前
单薄绿竹完成签到,获得积分10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
昭奚发布了新的文献求助30
3秒前
科研通AI2S应助聪慧若风采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
阿喵完成签到,获得积分10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
小小油应助科研通管家采纳,获得20
3秒前
黑猫乾杯应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
SciGPT应助夕荀采纳,获得10
3秒前
keyan应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
shaqima发布了新的文献求助10
3秒前
GPTea应助科研通管家采纳,获得20
3秒前
Jared应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
卜应完成签到,获得积分10
3秒前
思源应助科研通管家采纳,获得10
3秒前
spc68应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629388
求助须知:如何正确求助?哪些是违规求助? 4720032
关于积分的说明 14969548
捐赠科研通 4787503
什么是DOI,文献DOI怎么找? 2556351
邀请新用户注册赠送积分活动 1517486
关于科研通互助平台的介绍 1478188