Predictive method of pressure loss in wet clutch caused by seal wear based on stacking ensemble learning

活塞环 离合器 泄漏(经济) 印章(徽章) 过度拟合 圆柱 模拟 材料科学 计算机科学 工程类 戒指(化学) 机械工程 机器学习 人工神经网络 艺术 化学 有机化学 视觉艺术 经济 宏观经济学
作者
Ran Gong,Fengming Sun,Cheng Wang,He Zhang
出处
标识
DOI:10.1177/09544070241247369
摘要

The harsh operating conditions of heavy-duty vehicles accelerates the wear of the sealing ring in the transmission, leading to increased oil leakage and a reduction of the operating pressure in the piston cylinder of wet clutch. This impairs the proper functioning of the transmission in the heavy-duty vehicle. Therefore, it is necessary to predict the pressure loss inside the transmission quickly and effectively after the wear of the sealing ring. The wear of the sealing ring under different operating conditions is calculated through the modified Archard model. The relationship between the oil leakage and pressure loss after the wear of the sealing ring is analyzed using Fluent software. The analysis involves the effects of different wear levels of the sealing ring. The simulation results are validated through a high-speed oil cylinder performance test rig. Based on the validated simulation data and test data, a prediction model for pressure loss is established by using stacking ensemble learning with MLR (multiple linear regression), DTR (decision tree regression), and SVR (support vector regression) as the base learners and RF (random forest) as the meta-learner. The risk of model overfitting is reduced through k-fold cross-validation. The research results indicate that the fused stacking ensemble learning algorithm fully utilizes the advantages of each base learner and can effectively predict the pressure loss after the wear of the sealing ring, and achieve a higher accuracy. The establishment of this model provides theoretical support for real-time prediction of pressure loss after the wear of the sealing ring in actual heavy-duty vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助洁净斑马采纳,获得10
刚刚
doin发布了新的文献求助10
2秒前
giao完成签到,获得积分10
2秒前
Sew东坡完成签到,获得积分10
3秒前
动听安筠完成签到 ,获得积分10
3秒前
julian190完成签到,获得积分10
4秒前
ztl17523完成签到,获得积分10
4秒前
5秒前
花花完成签到,获得积分20
6秒前
jhxie完成签到,获得积分10
7秒前
HXX19完成签到 ,获得积分10
9秒前
10秒前
Darsine完成签到,获得积分10
10秒前
张张完成签到,获得积分10
10秒前
kelly完成签到,获得积分10
10秒前
accepted发布了新的文献求助10
11秒前
11秒前
宇文天思完成签到,获得积分10
11秒前
gudujian870928完成签到,获得积分10
14秒前
幽默的太阳完成签到 ,获得积分10
14秒前
洁净斑马发布了新的文献求助10
15秒前
旺仔发布了新的文献求助30
15秒前
YAN完成签到,获得积分10
15秒前
虚拟莫茗完成签到 ,获得积分10
15秒前
无相完成签到 ,获得积分10
16秒前
Lucas应助zmx采纳,获得10
17秒前
崔康佳完成签到,获得积分10
19秒前
xueluxin完成签到 ,获得积分10
19秒前
yin完成签到,获得积分10
20秒前
黄花完成签到 ,获得积分10
20秒前
好名字完成签到,获得积分10
21秒前
ww完成签到,获得积分10
21秒前
23秒前
Tk完成签到,获得积分10
24秒前
研友_LX7478完成签到,获得积分10
24秒前
小张想发刊完成签到,获得积分10
24秒前
doin完成签到,获得积分10
28秒前
爱笑的访梦完成签到,获得积分10
28秒前
eee完成签到,获得积分10
29秒前
青藤完成签到,获得积分10
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015737
求助须知:如何正确求助?哪些是违规求助? 3555681
关于积分的说明 11318391
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027