清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predictive method of pressure loss in wet clutch caused by seal wear based on stacking ensemble learning

活塞环 离合器 泄漏(经济) 印章(徽章) 过度拟合 圆柱 模拟 材料科学 计算机科学 工程类 戒指(化学) 机械工程 机器学习 人工神经网络 艺术 化学 有机化学 视觉艺术 经济 宏观经济学
作者
Ran Gong,Fengming Sun,Cheng Wang,He Zhang
出处
标识
DOI:10.1177/09544070241247369
摘要

The harsh operating conditions of heavy-duty vehicles accelerates the wear of the sealing ring in the transmission, leading to increased oil leakage and a reduction of the operating pressure in the piston cylinder of wet clutch. This impairs the proper functioning of the transmission in the heavy-duty vehicle. Therefore, it is necessary to predict the pressure loss inside the transmission quickly and effectively after the wear of the sealing ring. The wear of the sealing ring under different operating conditions is calculated through the modified Archard model. The relationship between the oil leakage and pressure loss after the wear of the sealing ring is analyzed using Fluent software. The analysis involves the effects of different wear levels of the sealing ring. The simulation results are validated through a high-speed oil cylinder performance test rig. Based on the validated simulation data and test data, a prediction model for pressure loss is established by using stacking ensemble learning with MLR (multiple linear regression), DTR (decision tree regression), and SVR (support vector regression) as the base learners and RF (random forest) as the meta-learner. The risk of model overfitting is reduced through k-fold cross-validation. The research results indicate that the fused stacking ensemble learning algorithm fully utilizes the advantages of each base learner and can effectively predict the pressure loss after the wear of the sealing ring, and achieve a higher accuracy. The establishment of this model provides theoretical support for real-time prediction of pressure loss after the wear of the sealing ring in actual heavy-duty vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lny发布了新的文献求助20
2秒前
孟寐以求完成签到 ,获得积分10
7秒前
1111完成签到 ,获得积分10
10秒前
su完成签到 ,获得积分0
12秒前
wBw完成签到,获得积分0
13秒前
耍酷寻双完成签到 ,获得积分10
22秒前
善良的蛋挞完成签到,获得积分10
23秒前
FFFFFF完成签到 ,获得积分10
25秒前
Moonchild完成签到 ,获得积分10
26秒前
陈M雯完成签到 ,获得积分10
28秒前
32秒前
枯叶蝶完成签到 ,获得积分10
38秒前
上官若男应助洋洋采纳,获得10
41秒前
Judy完成签到 ,获得积分0
42秒前
鱼儿游完成签到 ,获得积分10
43秒前
迷你的夜天完成签到 ,获得积分10
44秒前
感性的俊驰完成签到 ,获得积分10
49秒前
wr781586完成签到 ,获得积分10
49秒前
eyu完成签到,获得积分10
51秒前
airtermis完成签到 ,获得积分10
54秒前
eeeeeeenzyme完成签到 ,获得积分10
58秒前
1分钟前
缥缈的闭月完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
xiaosui完成签到 ,获得积分10
1分钟前
mumu发布了新的文献求助10
1分钟前
洋洋完成签到,获得积分10
1分钟前
166完成签到 ,获得积分10
1分钟前
tianshanfeihe完成签到 ,获得积分10
1分钟前
hcsdgf完成签到 ,获得积分10
1分钟前
qiqiqiqiqi完成签到 ,获得积分10
1分钟前
烟花应助风中的棒棒糖采纳,获得10
1分钟前
光亮白羊完成签到 ,获得积分10
1分钟前
chenmeimei2012完成签到 ,获得积分10
1分钟前
YZ完成签到 ,获得积分10
1分钟前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
1分钟前
knight7m完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
yunt完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612892
求助须知:如何正确求助?哪些是违规求助? 4017940
关于积分的说明 12436878
捐赠科研通 3700243
什么是DOI,文献DOI怎么找? 2040634
邀请新用户注册赠送积分活动 1073400
科研通“疑难数据库(出版商)”最低求助积分说明 957029