Multi-omics data integration and drug screening of AML cancer using Generative Adversarial Network

计算生物学 生成对抗网络 癌症 生成语法 组学 计算机科学 药品 生物信息学 医学 生物 人工智能 药理学 内科学 深度学习
作者
Sabrin Afroz,Nadira Islam,Md. Ahsan Habib,Md. Selim Reza,Md. Ashad Alam
出处
期刊:Methods [Elsevier]
卷期号:226: 138-150 被引量:2
标识
DOI:10.1016/j.ymeth.2024.04.017
摘要

In the era of precision medicine, accurate disease phenotype prediction for heterogeneous diseases, such as cancer, is emerging due to advanced technologies that link genotypes and phenotypes. However, it is difficult to integrate different types of biological data because they are so varied. In this study, we focused on predicting the traits of a blood cancer called Acute Myeloid Leukemia (AML) by combining different kinds of biological data. We used a recently developed method called Omics Generative Adversarial Network (GAN) to better classify cancer outcomes. The primary advantages of a GAN include its ability to create synthetic data that is nearly indistinguishable from real data, its high flexibility, and its wide range of applications, including multi-omics data analysis. In addition, the GAN was effective at combining two types of biological data. We created synthetic datasets for gene activity and DNA methylation. Our method was more accurate in predicting disease traits than using the original data alone. The experimental results provided evidence that the creation of synthetic data through interacting multi-omics data analysis using GANs improves the overall prediction quality. Furthermore, we identified the top-ranked significant genes through statistical methods and pinpointed potential candidate drug agents through in-silico studies. The proposed drugs, also supported by other independent studies, might play a crucial role in the treatment of AML cancer. The code is available on GitHub; https://github.com/SabrinAfroz/omicsGAN_codes?fbclid=IwAR1-/stuffmlE0hyWgSu2wlXo6dYlKUei3faLdlvpxTOOUPVlmYCloXf4Uk9ejK4I.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
激动的新筠完成签到,获得积分10
刚刚
刚刚
可爱的函函应助Ywffffff采纳,获得10
刚刚
RC_Wang应助翟晨莹采纳,获得10
1秒前
1秒前
孤海未蓝完成签到,获得积分10
2秒前
3秒前
cy发布了新的文献求助10
3秒前
4秒前
鱼雷完成签到,获得积分10
4秒前
十字入口完成签到,获得积分10
4秒前
4秒前
彭于晏应助wly9399375采纳,获得10
5秒前
ZS发布了新的文献求助10
5秒前
Metrix举报nostalgia求助涉嫌违规
5秒前
啦啦啦应助青羽落霞采纳,获得10
6秒前
斯文败类应助LLY采纳,获得10
6秒前
6秒前
比格蹦蹦发布了新的文献求助10
7秒前
lgh完成签到,获得积分10
9秒前
搜集达人应助优美雨筠采纳,获得10
9秒前
温冰雪发布了新的文献求助10
9秒前
10秒前
暴富发布了新的文献求助10
10秒前
丫头完成签到,获得积分10
10秒前
Herbert应助无心的南露采纳,获得60
10秒前
迷人听枫完成签到,获得积分10
11秒前
11秒前
SYLH应助Zoe采纳,获得10
12秒前
八艘跳发布了新的文献求助10
12秒前
Ywffffff发布了新的文献求助10
13秒前
科研通AI2S应助翟晨莹采纳,获得10
13秒前
billevans完成签到,获得积分10
14秒前
NexusExplorer应助flylmy2008采纳,获得10
14秒前
笑点低的孤容完成签到,获得积分10
15秒前
15秒前
15秒前
陈程发布了新的文献求助10
16秒前
冷酷的井完成签到 ,获得积分10
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512208
求助须知:如何正确求助?哪些是违规求助? 3094667
关于积分的说明 9224183
捐赠科研通 2789467
什么是DOI,文献DOI怎么找? 1530709
邀请新用户注册赠送积分活动 711048
科研通“疑难数据库(出版商)”最低求助积分说明 706518