Large language models facilitate the generation of electronic health record phenotyping algorithms

计算机科学 机器学习 可扩展性 SQL语言 可执行文件 算法 健康信息学 健康档案 人工智能 医疗保健 数据科学 数据库 程序设计语言 经济增长 经济
作者
Chao Yan,Helena Ong,Monika E. Grabowska,Matthew S. Krantz,Wu-Chen Su,Alyson L. Dickson,Josh F. Peterson,QiPing Feng,Dan M. Roden,C. Michael Stein,V. Eric Kerchberger,Bradley Malin,Wei‐Qi Wei
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
标识
DOI:10.1093/jamia/ocae072
摘要

Phenotyping is a core task in observational health research utilizing electronic health records (EHRs). Developing an accurate algorithm demands substantial input from domain experts, involving extensive literature review and evidence synthesis. This burdensome process limits scalability and delays knowledge discovery. We investigate the potential for leveraging large language models (LLMs) to enhance the efficiency of EHR phenotyping by generating high-quality algorithm drafts.We prompted four LLMs-GPT-4 and GPT-3.5 of ChatGPT, Claude 2, and Bard-in October 2023, asking them to generate executable phenotyping algorithms in the form of SQL queries adhering to a common data model (CDM) for three phenotypes (ie, type 2 diabetes mellitus, dementia, and hypothyroidism). Three phenotyping experts evaluated the returned algorithms across several critical metrics. We further implemented the top-rated algorithms and compared them against clinician-validated phenotyping algorithms from the Electronic Medical Records and Genomics (eMERGE) network.GPT-4 and GPT-3.5 exhibited significantly higher overall expert evaluation scores in instruction following, algorithmic logic, and SQL executability, when compared to Claude 2 and Bard. Although GPT-4 and GPT-3.5 effectively identified relevant clinical concepts, they exhibited immature capability in organizing phenotyping criteria with the proper logic, leading to phenotyping algorithms that were either excessively restrictive (with low recall) or overly broad (with low positive predictive values).GPT versions 3.5 and 4 are capable of drafting phenotyping algorithms by identifying relevant clinical criteria aligned with a CDM. However, expertise in informatics and clinical experience is still required to assess and further refine generated algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
意识难防滑完成签到,获得积分10
1秒前
shilong.yang发布了新的文献求助20
2秒前
2秒前
ha发布了新的文献求助30
2秒前
哭泣的猕猴桃完成签到,获得积分10
2秒前
丸子的饼王完成签到,获得积分20
3秒前
3秒前
3秒前
starofjlu应助O2采纳,获得10
4秒前
wrk完成签到,获得积分10
4秒前
4秒前
hahaha完成签到,获得积分10
4秒前
万能图书馆应助yrm采纳,获得10
4秒前
万里完成签到,获得积分10
6秒前
小野狼完成签到,获得积分10
6秒前
灵舒完成签到,获得积分10
6秒前
ICY完成签到,获得积分10
6秒前
Subzero发布了新的文献求助10
7秒前
张华发布了新的文献求助10
7秒前
没有你不行完成签到,获得积分10
8秒前
Yziii应助哈尼采纳,获得20
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
yufanhui应助科研通管家采纳,获得10
8秒前
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
8秒前
柑橘应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
8秒前
Cloud应助科研通管家采纳,获得20
8秒前
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
chenyinglin完成签到,获得积分10
9秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151000
求助须知:如何正确求助?哪些是违规求助? 2802506
关于积分的说明 7848292
捐赠科研通 2459791
什么是DOI,文献DOI怎么找? 1309336
科研通“疑难数据库(出版商)”最低求助积分说明 628894
版权声明 601757