Autofocus Based on Residual Network Realizes Raman Spectral Enhancement

残余物 自动对焦 拉曼光谱 计算机科学 人工智能 算法 光学 物理 光学(聚焦)
作者
Haozhao Chen,Liwei Yang,Weile Zhu,Ping Tang,Xinyue Xing,Weina Zhang,Liyun Zhong
标识
DOI:10.2139/ssrn.4616250
摘要

Due to its high sensitivity and specificity, Micro-Raman spectroscopy has emerged as a vital technique for molecular recognition and identification. As a weakly scattered signal, ensuring the accurate focus of the sample is essential for acquiring high quality Raman spectral signal and its analysis, especially in some complex microenvironments such as intracellular settings. Traditional autofocus methods are often time consuming or necessitate additional hardware, limiting real-time sample observation and device compatibility. Here, we propose an autofocus method based on residual network to realize rapid and adaptive focusing on Micro-Raman measurements. Using only a bright field image of the sample acquired on any image plane, we can predict the defocus distance with a residual network trained by Resnet50, in which the focus position is determined by combining the gradient and discrete cosine transform. Further, detailed regional division of the bright field map used for characterizing the height variation of actual sample surface is performed. As a result, a focus prediction map with 1 μm accuracy is obtained from a bright field image in 120 ms. Based on this method, we successfully realize cellular weak Raman signal enhancement and the necessary correction of spectral information. This adaptive focusing method based on residual network is beneficial to further enhance the sensitivity and accuracy of Micro-Raman spectroscopy technology, which is of great significance in promoting the wide application of Raman spectroscopy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晚安886发布了新的文献求助30
刚刚
科研通AI5应助王之争霸采纳,获得10
刚刚
coilamdau完成签到,获得积分10
刚刚
1秒前
祎雅发布了新的文献求助10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
memory发布了新的文献求助10
3秒前
Owen应助chancy采纳,获得10
3秒前
时尚的冷玉完成签到,获得积分10
3秒前
白菜完成签到 ,获得积分10
4秒前
星辰大海应助开心千青采纳,获得10
4秒前
4秒前
5秒前
星河在眼里完成签到,获得积分10
5秒前
6秒前
6秒前
xy发布了新的文献求助10
7秒前
Zzzzz发布了新的文献求助10
7秒前
普普完成签到,获得积分10
8秒前
8秒前
9秒前
菁菁业业发布了新的文献求助50
9秒前
ikun发布了新的文献求助10
9秒前
冷静的忆秋完成签到,获得积分10
10秒前
shidewu完成签到,获得积分10
11秒前
所所应助Hinao采纳,获得10
11秒前
xd发布了新的文献求助10
12秒前
12秒前
hello_world完成签到,获得积分10
13秒前
shinysparrow应助科研通管家采纳,获得10
13秒前
半岛铁盒应助科研通管家采纳,获得30
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
ding应助科研通管家采纳,获得10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660183
求助须知:如何正确求助?哪些是违规求助? 3221444
关于积分的说明 9740958
捐赠科研通 2930892
什么是DOI,文献DOI怎么找? 1604709
邀请新用户注册赠送积分活动 757477
科研通“疑难数据库(出版商)”最低求助积分说明 734439