Standard fetal ultrasound plane classification based on stacked ensemble of deep learning models

计算机科学 人工智能 随机森林 卷积神经网络 集成学习 模式识别(心理学) 深度学习 胎头 集合预报 机器学习 胎儿 怀孕 生物 遗传学
作者
Thunakala Bala Krishna,Priyanka Kokil
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122153-122153 被引量:12
标识
DOI:10.1016/j.eswa.2023.122153
摘要

Identifying standard fetal ultrasound (US) planes with key anatomical structures during mid-pregnancy prenatal screening is crucial for measuring fetal growth parameters and early detection of abnormalities. However, obtaining these standard planes is laborious and time-consuming and depends on the clinical experience of sonographers. Automatic detection of these planes can aid sonographers in identifying the correct standard planes. In recent times, various deep learning techniques have developed to automate the detection of standard fetal US planes. However, a common limitation among these approaches is their dependence on a single model prediction to make the final decision, which introduces the possibility of inaccuracies. Therefore, we propose an automated identification of commonly used standard fetal US planes based on the stacking ensemble of deep convolutional neural networks (CNN). The stacking ensemble method employs three pre-trained deep CNNs: AlexNet, VGG-19, and DarkNet-19. Softmax and random forest classifiers are used to get predictions from deep CNNs. The final prediction is made using the absolute majority voting technique. A publicly available fetal US dataset is employed to evaluate the performance of the stacking ensemble approach. The proposed ensemble model classifies fetal US planes into six distinct classes: abdomen, brain, femur, thorax, maternal cervix, and other (less commonly employed planes, such as kidney, and limbs) fetal planes. Experimental findings demonstrate that the stacking ensemble approach achieved high performance with an accuracy of 95.69 %, precision of 94.02 %, recall of 96.28 %, F1-score of 95.08 %, specificity of 99.12 %, and Matthews correlation coefficient of 94.19 % compared to individual deep CNN models and other competing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助Yx采纳,获得10
1秒前
2秒前
3秒前
冰强发布了新的文献求助10
3秒前
orixero应助科研通管家采纳,获得30
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
liming完成签到,获得积分10
5秒前
852应助乌兰巴托没有海采纳,获得10
5秒前
6秒前
6秒前
holly发布了新的文献求助10
7秒前
7秒前
7秒前
杰杰完成签到,获得积分20
7秒前
嘤嘤嘤完成签到,获得积分10
8秒前
8秒前
秀丽烨霖应助hahahah采纳,获得10
9秒前
科研通AI2S应助加油采纳,获得10
9秒前
hanmanman完成签到,获得积分10
9秒前
10秒前
艾蕾小天使完成签到,获得积分10
11秒前
HCLonely应助YuanpengChi采纳,获得10
11秒前
高琦关注了科研通微信公众号
11秒前
HCLonely应助Nikko采纳,获得10
11秒前
冰强完成签到,获得积分10
12秒前
JamesPei应助成就的南霜采纳,获得10
12秒前
AME发布了新的文献求助10
12秒前
苏同学发布了新的文献求助10
13秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3231685
求助须知:如何正确求助?哪些是违规求助? 2878630
关于积分的说明 8207205
捐赠科研通 2546129
什么是DOI,文献DOI怎么找? 1375690
科研通“疑难数据库(出版商)”最低求助积分说明 647445
邀请新用户注册赠送积分活动 622579