亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Standard fetal ultrasound plane classification based on stacked ensemble of deep learning models

计算机科学 人工智能 随机森林 卷积神经网络 集成学习 模式识别(心理学) 深度学习 胎头 集合预报 机器学习 胎儿 怀孕 遗传学 生物
作者
Thunakala Bala Krishna,Priyanka Kokil
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122153-122153 被引量:18
标识
DOI:10.1016/j.eswa.2023.122153
摘要

Identifying standard fetal ultrasound (US) planes with key anatomical structures during mid-pregnancy prenatal screening is crucial for measuring fetal growth parameters and early detection of abnormalities. However, obtaining these standard planes is laborious and time-consuming and depends on the clinical experience of sonographers. Automatic detection of these planes can aid sonographers in identifying the correct standard planes. In recent times, various deep learning techniques have developed to automate the detection of standard fetal US planes. However, a common limitation among these approaches is their dependence on a single model prediction to make the final decision, which introduces the possibility of inaccuracies. Therefore, we propose an automated identification of commonly used standard fetal US planes based on the stacking ensemble of deep convolutional neural networks (CNN). The stacking ensemble method employs three pre-trained deep CNNs: AlexNet, VGG-19, and DarkNet-19. Softmax and random forest classifiers are used to get predictions from deep CNNs. The final prediction is made using the absolute majority voting technique. A publicly available fetal US dataset is employed to evaluate the performance of the stacking ensemble approach. The proposed ensemble model classifies fetal US planes into six distinct classes: abdomen, brain, femur, thorax, maternal cervix, and other (less commonly employed planes, such as kidney, and limbs) fetal planes. Experimental findings demonstrate that the stacking ensemble approach achieved high performance with an accuracy of 95.69 %, precision of 94.02 %, recall of 96.28 %, F1-score of 95.08 %, specificity of 99.12 %, and Matthews correlation coefficient of 94.19 % compared to individual deep CNN models and other competing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
杨涵完成签到 ,获得积分10
5秒前
9秒前
11秒前
15秒前
量子星尘发布了新的文献求助10
18秒前
俭朴蜜蜂完成签到 ,获得积分10
20秒前
23秒前
36秒前
39秒前
伯赏元彤发布了新的文献求助10
42秒前
43秒前
丘比特应助ZXH采纳,获得10
44秒前
明亮的卿发布了新的文献求助20
49秒前
50秒前
Orange应助伯赏元彤采纳,获得10
51秒前
英姑应助明亮的卿采纳,获得10
56秒前
ZXH发布了新的文献求助10
56秒前
zxq1996完成签到 ,获得积分10
57秒前
59秒前
笨笨完成签到,获得积分10
59秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
1分钟前
Wei发布了新的文献求助10
1分钟前
1分钟前
1分钟前
脑洞疼应助lf采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
lf发布了新的文献求助10
1分钟前
1分钟前
伯赏元彤发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Djnsbj发布了新的文献求助10
1分钟前
平淡道天完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976649
求助须知:如何正确求助?哪些是违规求助? 3520735
关于积分的说明 11204672
捐赠科研通 3257497
什么是DOI,文献DOI怎么找? 1798716
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806629