计算机科学
人工智能
随机森林
卷积神经网络
集成学习
模式识别(心理学)
深度学习
胎头
集合预报
机器学习
胎儿
怀孕
生物
遗传学
作者
Thunakala Bala Krishna,Priyanka Kokil
标识
DOI:10.1016/j.eswa.2023.122153
摘要
Identifying standard fetal ultrasound (US) planes with key anatomical structures during mid-pregnancy prenatal screening is crucial for measuring fetal growth parameters and early detection of abnormalities. However, obtaining these standard planes is laborious and time-consuming and depends on the clinical experience of sonographers. Automatic detection of these planes can aid sonographers in identifying the correct standard planes. In recent times, various deep learning techniques have developed to automate the detection of standard fetal US planes. However, a common limitation among these approaches is their dependence on a single model prediction to make the final decision, which introduces the possibility of inaccuracies. Therefore, we propose an automated identification of commonly used standard fetal US planes based on the stacking ensemble of deep convolutional neural networks (CNN). The stacking ensemble method employs three pre-trained deep CNNs: AlexNet, VGG-19, and DarkNet-19. Softmax and random forest classifiers are used to get predictions from deep CNNs. The final prediction is made using the absolute majority voting technique. A publicly available fetal US dataset is employed to evaluate the performance of the stacking ensemble approach. The proposed ensemble model classifies fetal US planes into six distinct classes: abdomen, brain, femur, thorax, maternal cervix, and other (less commonly employed planes, such as kidney, and limbs) fetal planes. Experimental findings demonstrate that the stacking ensemble approach achieved high performance with an accuracy of 95.69 %, precision of 94.02 %, recall of 96.28 %, F1-score of 95.08 %, specificity of 99.12 %, and Matthews correlation coefficient of 94.19 % compared to individual deep CNN models and other competing methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI