An explainable machine learning model for sentiment analysis of online reviews

情绪分析 计算机科学 人工智能 机器学习 自然语言处理
作者
Soufiane El Mrabti,Jaouad El-Mekkaoui,Adil Hachmoud,Mohamed Lazaar
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:302: 112348-112348
标识
DOI:10.1016/j.knosys.2024.112348
摘要

Over the last two decades and with the widespread use of social media and e-commerce sites, scientific research in the field of sentiment analysis (SA) has made considerable progress in terms of obtained results and the number of published articles. The greatest part of this progress has been achieved by SA systems based on machine learning. However, most of these systems lack transparency and explainability, making it difficult to understand their internal processes and consequently to trust their decisions and predictions. To address this problem, we propose an easy-to-use machine learning model based on an intuitive geometric approach for SA of online reviews. For linearly separable data, we adopt an iterative algorithm called the explainable algorithm for binary linear classification (EABLC) to determine the maximum-margin separating hyperplane based on the geometric concept of the convex hull. As an extension of EABLC, two new algorithms are further proposed, namely, the soft explainable algorithm for binary classification and the explainable algorithm for binary polyhedral classification, to avoid outliers and deal with linearly nonseparable data. Aside from its simplicity and intuitiveness, experimental results on the Amazon product and movie review sentiment datasets demonstrate the efficiency and robustness of our model, which outperforms ten benchmark classification algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guyuefanxing发布了新的文献求助10
1秒前
summer应助失眠奥特曼采纳,获得10
1秒前
123发布了新的文献求助20
1秒前
2秒前
2秒前
2秒前
ww发布了新的文献求助10
3秒前
3秒前
孙灏发布了新的文献求助10
3秒前
yue完成签到,获得积分10
3秒前
汉堡包应助bin采纳,获得10
3秒前
MOD完成签到,获得积分10
3秒前
一颗菠菜完成签到,获得积分10
4秒前
4秒前
72发布了新的文献求助20
4秒前
梦璃发布了新的文献求助10
6秒前
所所应助YH采纳,获得10
7秒前
fff发布了新的文献求助10
7秒前
次我完成签到,获得积分10
7秒前
科研狗发布了新的文献求助20
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
ssll发布了新的文献求助10
8秒前
TheDay发布了新的文献求助10
8秒前
刻苦的如霜完成签到,获得积分10
9秒前
9秒前
niupotr完成签到,获得积分10
9秒前
研友_ngKdbn发布了新的文献求助10
10秒前
10秒前
英姑应助爱吃肥牛采纳,获得10
10秒前
桐桐应助大君哥采纳,获得10
10秒前
11秒前
mqq发布了新的文献求助10
11秒前
12秒前
竹心蜓发布了新的文献求助10
12秒前
zkexuan发布了新的文献求助20
12秒前
13秒前
蒸蒸日上发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951583
求助须知:如何正确求助?哪些是违规求助? 3496980
关于积分的说明 11085596
捐赠科研通 3227413
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868495
科研通“疑难数据库(出版商)”最低求助积分说明 801154