Loads experienced by a Francis turbine during short and fast transient under part load operation

混流式水轮机 瞬态(计算机编程) 物理 机械 背景(考古学) 涡轮机 尾水管 甩负荷 控制理论(社会学) 热力学 计算机科学 地质学 操作系统 古生物学 控制(管理) 人工智能
作者
Zhou Xing,Xiangyu Dai,Quanshui Huang,Xiaodan Tang,Zhipeng Bai,Michel J. Cervantes
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (8)
标识
DOI:10.1063/5.0217373
摘要

As hydropower is integrated into the renewable energy system, the turbine components are liable to many loads variation for regulation. The loads experienced under transient operation need to be accounted for and understood to develop adequate mitigation technique and strategies. To identify possible risks occurring during such short and fast transients, we investigate the nonlinear growth and time delay effects of pressure fluctuations, as well as the unsteady flow field evolution for a Francis turbine under load reduction in the part load regime. A two-stage transient process analytical framework is proposed via signal processing and vortex identification methods, including main transient and post-transient stages. In the main transient stage, the dominant frequency of pressure fluctuations within the draft tube shifts from 0.32·fn to 0.24·fn, accompanied by a fivefold increase in the amplitude. Furthermore, low-frequency pressure fluctuations in a wider range are identified (0–2·fn), source of possible resonance of power plant structures. The maximum pressure is reached in the post-transient stage after the end of the guide vane closure and is 50% larger than the maximum value in the main transient stage. When comparing the two components of pressure fluctuations within the draft tube, the synchronous component increases slowly but reaches the peak faster, which can be explained by the evolution of instantaneous vortex structure investigated with proper orthogonal decomposition. The findings are useful to ascertain possible risk factors along with the investigation of the evolution of non-stationary flow field in the context of frequent turbine load variations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
書生发布了新的文献求助10
刚刚
1秒前
星辰大海应助科研小白采纳,获得10
3秒前
3秒前
3秒前
3秒前
子车茗应助霜降采纳,获得10
3秒前
打打应助Smith采纳,获得10
4秒前
斯文败类应助jyd采纳,获得10
5秒前
唯美完成签到,获得积分10
5秒前
5秒前
6秒前
尘埃之影完成签到,获得积分10
6秒前
pera发布了新的文献求助10
7秒前
DDONG826完成签到,获得积分10
7秒前
7秒前
7秒前
111发布了新的文献求助10
7秒前
爆米花应助怕孤单的牛排采纳,获得10
7秒前
天天快乐应助多多采纳,获得10
8秒前
123完成签到,获得积分10
8秒前
9秒前
赘婿应助hao123采纳,获得10
9秒前
9秒前
慕青应助虚幻故事采纳,获得10
9秒前
weiwei应助贵金属LiLi采纳,获得10
10秒前
传奇3应助1111采纳,获得10
10秒前
wang发布了新的文献求助10
11秒前
大模型应助123采纳,获得10
12秒前
12秒前
曾曾给曾曾的求助进行了留言
12秒前
12秒前
小赞芽完成签到,获得积分10
13秒前
宏hong发布了新的文献求助10
13秒前
曾丹发布了新的文献求助20
13秒前
yi蔚发布了新的文献求助10
13秒前
14秒前
14秒前
小马甲应助林曳采纳,获得10
14秒前
小二郎应助LX采纳,获得10
14秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217353
求助须知:如何正确求助?哪些是违规求助? 2866617
关于积分的说明 8152518
捐赠科研通 2533308
什么是DOI,文献DOI怎么找? 1366190
科研通“疑难数据库(出版商)”最低求助积分说明 644710
邀请新用户注册赠送积分活动 617698