A Survey on Deep Neural Network Pruning: Taxonomy, Comparison, Analysis, and Recommendations

人工智能 计算机科学 分类学(生物学) 人工神经网络 机器学习 模式识别(心理学) 生物 植物
作者
Hongrong Cheng,Miao Zhang,Qinfeng Shi
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (12): 10558-10578 被引量:27
标识
DOI:10.1109/tpami.2024.3447085
摘要

Modern deep neural networks, particularly recent large language models, come with massive model sizes that require significant computational and storage resources. To enable the deployment of modern models on resource-constrained environments and to accelerate inference time, researchers have increasingly explored pruning techniques as a popular research direction in neural network compression. More than three thousand pruning papers have been published from 2020 to 2024. However, there is a dearth of up-to-date comprehensive review papers on pruning. To address this issue, in this survey, we provide a comprehensive review of existing research works on deep neural network pruning in a taxonomy of 1) universal/specific speedup, 2) when to prune, 3) how to prune, and 4) fusion of pruning and other compression techniques. We then provide a thorough comparative analysis of eight pairs of contrast settings for pruning (e.g., unstructured/structured, one-shot/iterative, data-free/data-driven, initialized/pre-trained weights, etc.) and explore several emerging topics, including pruning for large language models, vision transformers, diffusion models, and large multimodal models, post-training pruning, and different levels of supervision for pruning to shed light on the commonalities and differences of existing methods and lay the foundation for further method development. Finally, we provide some valuable recommendations on selecting pruning methods and prospect several promising research directions for neural network pruning. To facilitate future research on deep neural network pruning, we summarize broad pruning applications (e.g., adversarial robustness, natural language understanding, etc.) and build a curated collection of datasets, networks, and evaluations on different applications. We maintain a repository on https://github.com/hrcheng1066/awesome-pruning that serves as a comprehensive resource for neural network pruning papers and corresponding open-source codes. We will keep updating this repository to include the latest advancements in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc发布了新的文献求助10
1秒前
杳鸢应助胖胖采纳,获得10
2秒前
行云发布了新的文献求助10
2秒前
今后应助个性的友蕊采纳,获得30
2秒前
张xx发布了新的文献求助10
4秒前
4秒前
科研通AI5应助吃肯德基采纳,获得10
4秒前
天天快乐应助errui采纳,获得10
5秒前
Lucas应助淡然向松采纳,获得10
7秒前
精明元霜完成签到,获得积分10
7秒前
建新应助KEYANTUTU采纳,获得10
8秒前
8秒前
江睿曦完成签到,获得积分10
9秒前
10秒前
科研通AI5应助归海诗珊采纳,获得30
12秒前
13秒前
科研通AI5应助Suyi采纳,获得30
14秒前
王可发布了新的文献求助10
14秒前
15秒前
科研通AI5应助瑾玉采纳,获得10
15秒前
啦啦啦发布了新的文献求助10
16秒前
16秒前
吃肯德基发布了新的文献求助10
16秒前
17秒前
kk完成签到,获得积分20
18秒前
20秒前
kk发布了新的文献求助30
20秒前
12完成签到 ,获得积分10
20秒前
Ava应助樱桃肉丸子采纳,获得10
21秒前
21秒前
淡然向松发布了新的文献求助10
21秒前
22秒前
李佰科完成签到,获得积分10
22秒前
22秒前
errui发布了新的文献求助10
22秒前
22秒前
大煎饼果子完成签到,获得积分10
23秒前
23秒前
科研通AI5应助精明元霜采纳,获得200
23秒前
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Population Genetics 2000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3496552
求助须知:如何正确求助?哪些是违规求助? 3081396
关于积分的说明 9167155
捐赠科研通 2774333
什么是DOI,文献DOI怎么找? 1522416
邀请新用户注册赠送积分活动 705915
科研通“疑难数据库(出版商)”最低求助积分说明 703173