清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Survey on Deep Neural Network Pruning: Taxonomy, Comparison, Analysis, and Recommendations

人工智能 计算机科学 分类学(生物学) 人工神经网络 机器学习 模式识别(心理学) 生物 植物
作者
Hongrong Cheng,Miao Zhang,Qinfeng Shi
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (12): 10558-10578 被引量:44
标识
DOI:10.1109/tpami.2024.3447085
摘要

Modern deep neural networks, particularly recent large language models, come with massive model sizes that require significant computational and storage resources. To enable the deployment of modern models on resource-constrained environments and to accelerate inference time, researchers have increasingly explored pruning techniques as a popular research direction in neural network compression. More than three thousand pruning papers have been published from 2020 to 2024. However, there is a dearth of up-to-date comprehensive review papers on pruning. To address this issue, in this survey, we provide a comprehensive review of existing research works on deep neural network pruning in a taxonomy of 1) universal/specific speedup, 2) when to prune, 3) how to prune, and 4) fusion of pruning and other compression techniques. We then provide a thorough comparative analysis of eight pairs of contrast settings for pruning (e.g., unstructured/structured, one-shot/iterative, data-free/data-driven, initialized/pre-trained weights, etc.) and explore several emerging topics, including pruning for large language models, vision transformers, diffusion models, and large multimodal models, post-training pruning, and different levels of supervision for pruning to shed light on the commonalities and differences of existing methods and lay the foundation for further method development. Finally, we provide some valuable recommendations on selecting pruning methods and prospect several promising research directions for neural network pruning. To facilitate future research on deep neural network pruning, we summarize broad pruning applications (e.g., adversarial robustness, natural language understanding, etc.) and build a curated collection of datasets, networks, and evaluations on different applications. We maintain a repository on https://github.com/hrcheng1066/awesome-pruning that serves as a comprehensive resource for neural network pruning papers and corresponding open-source codes. We will keep updating this repository to include the latest advancements in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
yw发布了新的文献求助10
11秒前
科研通AI5应助笑面客采纳,获得10
15秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
猪猪hero应助默默无闻采纳,获得10
28秒前
28秒前
笑面客发布了新的文献求助10
34秒前
科研通AI5应助yw采纳,获得30
45秒前
鲤鱼越越完成签到 ,获得积分10
53秒前
默默无闻完成签到,获得积分10
58秒前
1分钟前
drhwang完成签到,获得积分10
1分钟前
1分钟前
yw发布了新的文献求助30
1分钟前
vbnn完成签到 ,获得积分10
1分钟前
zhdjj完成签到 ,获得积分10
1分钟前
violetlishu完成签到 ,获得积分10
2分钟前
碗碗豆喵完成签到 ,获得积分10
2分钟前
www完成签到 ,获得积分10
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
醋溜荧光大蒜完成签到 ,获得积分10
2分钟前
Xu完成签到,获得积分10
2分钟前
欣欣完成签到,获得积分10
2分钟前
小蘑菇应助mia采纳,获得10
2分钟前
科目三应助lanxinge采纳,获得10
3分钟前
Barid完成签到,获得积分10
3分钟前
刘刘完成签到 ,获得积分10
3分钟前
zhanlang完成签到 ,获得积分10
3分钟前
谨慎的元冬完成签到 ,获得积分10
3分钟前
爱上阳光的鱼完成签到 ,获得积分10
4分钟前
牙瓜完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
大个应助科研通管家采纳,获得10
4分钟前
4分钟前
mia发布了新的文献求助10
4分钟前
4分钟前
4分钟前
lanxinge发布了新的文献求助10
4分钟前
大模型应助lanxinge采纳,获得10
5分钟前
ldjldj_2004完成签到 ,获得积分10
5分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746201
求助须知:如何正确求助?哪些是违规求助? 3289015
关于积分的说明 10061744
捐赠科研通 3005280
什么是DOI,文献DOI怎么找? 1650186
邀请新用户注册赠送积分活动 785753
科研通“疑难数据库(出版商)”最低求助积分说明 751258