A Spatial-Temporal Aggregated Graph Neural Network for Docked Bike-sharing Demand Forecasting

共享单车 计算机科学 图形 人工神经网络 需求预测 人工智能 机器学习 数据挖掘 运筹学 理论计算机科学 数学 运输工程 工程类
作者
Jiahui Feng,Hefu Liu,Jingmei Zhou,Yang Zhou
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:18 (9): 1-27 被引量:1
标识
DOI:10.1145/3690388
摘要

Predicting the number of rented and returned bikes at each station is crucial for operators to proactively manage shared bike relocation. Although existing research has proposed spatial-temporal prediction models that significantly advance traffic prediction, these models often neglect the unique characteristics of shared bike systems (BSS). Spatially, the entire bike-sharing system (BSS) experiences peak activity during morning and evening rush hours, whereas, during other periods, activity is localized to local stations, with some recording no rides, highlighting the need to distinguish between global and local spatial information across different times. Temporally, the historical riding records for each station exhibit non-stationary patterns, necessitating the analysis of both global trends and local fluctuations. Existing Graph Neural Network (GNN) approaches to predicting shared bike demand primarily capture static spatial-temporal data and fail to account for the dynamic nature of bike flows. Moreover, these studies focus on global spatial-temporal information without considering local nuances, making it challenging to capture spatiotemporal dynamics in fluctuating BSS. To address these challenges, we introduce the Spatial-Temporal Aggregated Graph Neural Network (STAGNN). Our model first constructs a dynamic adjacent matrix to describe the evolving connections between stations, followed by local and global information layers to capture spatial-temporal information from large-scale shared bike networks accurately. Our methodology has been validated through experiments on four real-world datasets, comparing it against benchmark models to demonstrate superior prediction accuracy. Additionally, we conduct extended experiments on four datasets during the morning and evening rush hours, and the results also affirm the efficacy of the STAGNN in enhancing prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心叫兽发布了新的文献求助10
1秒前
2秒前
东邪西毒加任我行完成签到,获得积分10
2秒前
2秒前
欣慰碧琴完成签到,获得积分10
2秒前
Joe完成签到,获得积分10
2秒前
xxx完成签到,获得积分10
3秒前
4秒前
lc339发布了新的文献求助10
5秒前
百结发布了新的文献求助10
6秒前
6秒前
在水一方应助Joe采纳,获得10
6秒前
CHEN完成签到,获得积分10
7秒前
7秒前
cyt完成签到 ,获得积分10
7秒前
小懒猪完成签到,获得积分10
7秒前
领导范儿应助朴实的紊采纳,获得10
8秒前
8秒前
顾矜应助DXJ采纳,获得10
8秒前
9秒前
zhangjian发布了新的文献求助20
9秒前
BJ_whc完成签到,获得积分10
9秒前
menga完成签到,获得积分20
9秒前
rational发布了新的文献求助10
12秒前
临诗完成签到,获得积分10
12秒前
一只狗东西完成签到 ,获得积分10
13秒前
kuaijack发布了新的文献求助20
13秒前
CHEN发布了新的文献求助10
13秒前
menga发布了新的文献求助10
13秒前
沉迷学术无法自拔应助kyt采纳,获得10
13秒前
传奇3应助百结采纳,获得10
14秒前
14秒前
15秒前
四夕完成签到 ,获得积分10
15秒前
15秒前
典雅的煜城完成签到,获得积分10
16秒前
niuzhanshi关注了科研通微信公众号
16秒前
17秒前
lmfffff发布了新的文献求助10
17秒前
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3467952
求助须知:如何正确求助?哪些是违规求助? 3060812
关于积分的说明 9073561
捐赠科研通 2751387
什么是DOI,文献DOI怎么找? 1509665
邀请新用户注册赠送积分活动 697413
科研通“疑难数据库(出版商)”最低求助积分说明 697395