Enhancing Hydrogen Laminar Burning Velocity Estimation With Artificial Neural Networks and Simulated Data

层流 人工神经网络 计算机科学 估计 人工智能 机械 工程类 物理 系统工程
作者
Andrius Ambrutis,Mantas Povilaitis
标识
DOI:10.1115/icone31-135582
摘要

Abstract Practically relevant containment scale combustion simulations require fast methods applicable to comparatively sparse meshes, e.g. RANS. Combustion rate in this case can be estimated using simplified progress variable equation closures, for example, Turbulent Flame speed Closure model, and correlations for laminar burning velocity (LBV) instead of chemical kinetics. However, existing correlations may lack accuracy and have restricted validity domains. In the previous work, by developing experimental-data-based Artificial Neural Networks (ANN) model (original), we showed that ANN can be used for fast and accurate prediction of LBV in dry hydrogen-air mixtures from temperature, pressure and equivalence ratio. However, due to limited amount of experimental data available in the literature, database consisted of a relatively low number of experimental datapoints (around 2000). This led to model exhibiting some unphysical behaviour at higher temperatures and specific pressures, requiring more data than is available to enhance its reliability. This work presents an attempt to solve the problem of insufficient database by replacing simulated data instead of experimental. The architecture of new ANN was kept similar to original ANN, ensuring similar prediction time. Instead of a few thousand experimental data points, new model was trained using around 1 000 000 data values generated using chemical kinetics simulation. The larger database improved new model predictions compared to original and led to a more physical LBV behaviour estimation. In addition, new model has an expanded range of applicability. In our estimation, any further improvement in our model accuracy is mostly limited by the number of neurons, restricted by the need for fast ANN calculations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lhh完成签到 ,获得积分10
刚刚
能干的丸子完成签到,获得积分10
1秒前
金铭完成签到,获得积分10
2秒前
2秒前
2秒前
单薄的败发布了新的文献求助10
5秒前
善学以致用应助RIchard采纳,获得10
5秒前
APPIE777发布了新的文献求助10
6秒前
温暖的碧蓉完成签到 ,获得积分10
6秒前
Cactus发布了新的文献求助10
6秒前
怡然的友容完成签到,获得积分10
7秒前
范旭东发布了新的文献求助10
7秒前
乐观啤酒应助kecheng采纳,获得10
7秒前
善学以致用应助hc采纳,获得10
8秒前
zho应助负责的方盒采纳,获得10
8秒前
zz完成签到,获得积分10
8秒前
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
lyl19880908应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
达雨应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
10秒前
semigreen完成签到,获得积分10
10秒前
包容的跳跳糖完成签到 ,获得积分10
10秒前
czt完成签到 ,获得积分10
11秒前
12秒前
刻苦的小虾米完成签到 ,获得积分10
12秒前
柑橘发布了新的文献求助10
15秒前
科研通AI2S应助范旭东采纳,获得10
16秒前
光亮的立果完成签到,获得积分10
16秒前
小蘑菇应助有丝分裂吉采纳,获得50
16秒前
高分求助中
IZELTABART TAPATANSINE 500
呼吸系统 400
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Where and how to use plate heat exchangers 350
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3706441
求助须知:如何正确求助?哪些是违规求助? 3255461
关于积分的说明 9895281
捐赠科研通 2967816
什么是DOI,文献DOI怎么找? 1627539
邀请新用户注册赠送积分活动 771556
科研通“疑难数据库(出版商)”最低求助积分说明 743417