Patient‐specific deep learning for 3D protoacoustic image reconstruction and dose verification in proton therapy

人工智能 深度学习 均方误差 基本事实 相似性(几何) 图像质量 模式识别(心理学) 计算机科学 迭代重建 试验装置 学习迁移 数据集 核医学 阶段(地层学) 数学 医学 图像(数学) 统计 古生物学 生物
作者
Yankun Lang,Zhuoran Jiang,Leshan Sun,Phuoc Tran,Sina Mossahebi,Liangzhong Xiang,Lei Ren
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17294
摘要

Abstract Background Protoacoustic (PA) imaging has the potential to provide real‐time 3D dose verification of proton therapy. However, PA images are susceptible to severe distortion due to limited angle acquisition. Our previous studies showed the potential of using deep learning to enhance PA images. As the model was trained using a limited number of patients' data, its efficacy was limited when applied to individual patients. Purpose In this study, we developed a patient‐specific deep learning method for protoacoustic imaging to improve the reconstruction quality of protoacoustic imaging and the accuracy of dose verification for individual patients. Methods Our method consists of two stages: in the first stage, a group model is trained from a diverse training set containing all patients, where a novel deep learning network is employed to directly reconstruct the initial pressure maps from the radiofrequency (RF) signals; in the second stage, we apply transfer learning on the pre‐trained group model using patient‐specific dataset derived from a novel data augmentation method to tune it into a patient‐specific model. Raw PA signals were simulated based on computed tomography (CT) images and the pressure map derived from the planned dose. The reconstructed PA images were evaluated against the ground truth by using the root mean squared errors (RMSE), structural similarity index measure (SSIM) and gamma index on 10 specific prostate cancer patients. The significance level was evaluated by t ‐test with the p ‐value threshold of 0.05 compared with the results from the group model. Results The patient‐specific model achieved an average RMSE of 0.014 (), and an average SSIM of 0.981 (), out‐performing the group model. Qualitative results also demonstrated that our patient‐specific approach acquired better imaging quality with more details reconstructed when comparing with the group model. Dose verification achieved an average RMSE of 0.011 (), and an average SSIM of 0.995 (). Gamma index evaluation demonstrated a high agreement (97.4% [] and 97.9% [] for 1%/3 and 1%/5 mm) between the predicted and the ground truth dose maps. Our approach approximately took 6 s to reconstruct PA images for each patient, demonstrating its feasibility for online 3D dose verification for prostate proton therapy. Conclusions Our method demonstrated the feasibility of achieving 3D high‐precision PA‐based dose verification using patient‐specific deep‐learning approaches, which can potentially be used to guide the treatment to mitigate the impact of range uncertainty and improve the precision. Further studies are needed to validate the clinical impact of the technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白白发布了新的文献求助10
2秒前
2秒前
xxxd发布了新的文献求助10
2秒前
zzz完成签到,获得积分10
2秒前
王春梅发布了新的文献求助10
3秒前
甜甜醉波完成签到,获得积分10
3秒前
苹果柜子完成签到,获得积分10
3秒前
义气的如松完成签到 ,获得积分10
3秒前
金属多酚完成签到,获得积分10
3秒前
美满的曼易完成签到,获得积分10
3秒前
于彤发布了新的文献求助20
4秒前
4秒前
Comet完成签到,获得积分10
4秒前
5秒前
5秒前
AD钙大王完成签到 ,获得积分10
5秒前
6秒前
椰子壳发布了新的文献求助10
6秒前
ding应助76542cu采纳,获得10
6秒前
6秒前
7秒前
7秒前
山鸟与鱼不同路完成签到 ,获得积分10
7秒前
天天快乐应助京京京采纳,获得10
7秒前
团结友爱完成签到,获得积分10
8秒前
8秒前
8秒前
Owen应助wzjs采纳,获得10
8秒前
王明磊完成签到,获得积分10
9秒前
10秒前
10秒前
七七发布了新的文献求助20
10秒前
10秒前
yjj19990124发布了新的文献求助30
10秒前
SciGPT应助邓博采纳,获得30
11秒前
binbinbin发布了新的文献求助10
11秒前
11秒前
小马甲应助wangyi采纳,获得10
11秒前
目标发nature完成签到,获得积分10
11秒前
激昂的背包完成签到 ,获得积分10
12秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3440824
求助须知:如何正确求助?哪些是违规求助? 3037241
关于积分的说明 8968067
捐赠科研通 2725790
什么是DOI,文献DOI怎么找? 1495072
科研通“疑难数据库(出版商)”最低求助积分说明 691074
邀请新用户注册赠送积分活动 687806