Deep Learning-Based Computer-Aided Detection System for Preoperative Chest Radiographs to Predict Postoperative Pneumonia

医学 计算机辅助设计 接收机工作特性 肺炎 逻辑回归 队列 射线照相术 回顾性队列研究 混淆 优势比 内科学 放射科 外科 工程类 工程制图
作者
Taehee Lee,Eui Jin Hwang,Chang Min Park,Jin Mo Goo
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (12): 2844-2855 被引量:3
标识
DOI:10.1016/j.acra.2023.02.016
摘要

The role of preoperative chest radiography (CR) for prediction of postoperative pneumonia remains uncertain. We aimed to develop and validate a prediction model for postoperative pneumonia incorporating findings of preoperative CRs evaluated by a deep learning-based computer-aided detection (DL-CAD) system MATERIALS AND METHODS: This retrospective study included consecutive patients who underwent surgery between January 2019 and March 2020 and divided into development (surgery in 2019) and validation (surgery between January and March 2020) cohorts. Preoperative CRs obtained within 1-month before surgery were analyzed with a commercialized DL-CAD that provided probability values for the presence of 10 different abnormalities in CRs. Logistic regression models to predict postoperative pneumonia were built using clinical variables (clinical model), and both clinical variables and DL-CAD results for preoperative CRs (DL-CAD model). The discriminative performances of the models were evaluated by area under the receiver operating characteristic curves.In development cohort (n = 19,349; mean age, 57 years; 11,392 men), DL-CAD results for pulmonary nodules (odds ratio [OR, for 1% increase in probability value], 1.007; p = 0.021), consolidation (OR, 1.019; p < 0.001), and cardiomegaly (OR, 1.013; p < 0.001) were independent predictors of postoperative pneumonia and were included in the DL-CAD model. In validation cohort (n = 4957; mean age, 56 years; 2848 men), the DL-CAD model exhibited a higher AUROC than the clinical model (0.843 vs. 0.815; p = 0.012).Abnormalities in preoperative CRs evaluated by a DL-CAD were independent risk factors for postoperative pneumonia. Using DL-CAD results for preoperative CRs led to an improved prediction of postoperative pneumonia.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助kk_yang采纳,获得10
刚刚
等待盼山发布了新的文献求助20
1秒前
JETSTREAM完成签到,获得积分10
1秒前
Owen应助lq采纳,获得10
1秒前
彪壮的邑完成签到,获得积分10
1秒前
研友_VZG7GZ应助龙龍泷采纳,获得10
2秒前
Earnestlee发布了新的文献求助60
2秒前
ruirui_love发布了新的文献求助10
3秒前
科研通AI6应助aishiying采纳,获得30
3秒前
麦子发布了新的文献求助10
3秒前
3秒前
可爱的函函应助花汐采纳,获得10
4秒前
善学以致用应助好运莲莲采纳,获得10
4秒前
情怀应助小七2022采纳,获得10
4秒前
MUWENYING完成签到,获得积分10
4秒前
上官若男应助AJY采纳,获得10
4秒前
科研通AI6应助噜啦啦采纳,获得10
4秒前
上官若男应助小闰土采纳,获得10
4秒前
xie发布了新的文献求助10
5秒前
情怀应助烤肠采纳,获得10
6秒前
97发布了新的文献求助10
6秒前
虚心碧完成签到,获得积分20
6秒前
7秒前
舒适静丹发布了新的文献求助10
7秒前
王一完成签到,获得积分20
8秒前
8秒前
8秒前
8秒前
9秒前
黄礼韬发布了新的文献求助10
9秒前
Takagi完成签到,获得积分10
10秒前
2010完成签到,获得积分10
10秒前
11秒前
王一发布了新的文献求助30
11秒前
11秒前
11秒前
尼古拉斯完成签到,获得积分10
11秒前
摆烂ing完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525344
求助须知:如何正确求助?哪些是违规求助? 4615587
关于积分的说明 14549232
捐赠科研通 4553605
什么是DOI,文献DOI怎么找? 2495428
邀请新用户注册赠送积分活动 1475975
关于科研通互助平台的介绍 1447716