Direction Aware Positional and Structural Encoding for Directed Graph Neural Networks

计算机科学 图形 理论计算机科学 节点(物理) 有向图 GSM演进的增强数据速率 水准点(测量) 无向图 代表(政治) 链接(几何体) 人工智能 组合数学 算法 数学 地理 法学 工程类 政治 结构工程 计算机网络 政治学 大地测量学
作者
Yonas Sium,Γεώργιος Κόλλιας,Tsuyoshi Idé,Payel Das,Naoki Abe,Aurélie Lozano,Qi Li
标识
DOI:10.1109/icassp49357.2023.10094964
摘要

We propose a novel method for computing joint 2-node structural representations for link prediction in directed graphs. Existing approaches can be grouped into two families. The first group of methods learn structural embeddings of individual nodes in the entire graph through a directed Graph Neural Network (GNNs), and then combine pairs of the encodings to get a representation for the respective node pairs. Methods in the second group compute a representation of the subgraph enclosing the two nodes by employing GNNs initialized with positional encodings and consider these as their potential edge embeddings. Both families of link prediction techniques suffer from considerable shortcomings: The former fail to differentiate two distant nodes with similar neighborhoods; The latter, although provably appropriate for learning edge representations, adopt undirected GNNs, positional encodings, and subgraphs, so the edge direction signal is inevitably lost. Our proposal is also based on the idea of enclosing subgraphs, but the subgraphs are assumed directed, and directed Graph Neural Networks (GNNs) are used to learn their node encodings and initial positional embeddings are direction-aware. Our emphasis on capturing the direction of edges is reflected in superior performance in the link prediction task against baselines with undirected GNNs on symmetrized enclosing subgraphs and existing directed GNNs over a collection of benchmark graph datasets. 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
候选型完成签到,获得积分10
2秒前
LM发布了新的文献求助10
2秒前
月皎完成签到 ,获得积分10
2秒前
3秒前
迷途发布了新的文献求助10
3秒前
深情安青应助快乐源泉采纳,获得10
4秒前
晓晓完成签到,获得积分10
4秒前
5秒前
诺796发布了新的文献求助10
5秒前
可爱萨摩耶完成签到,获得积分10
5秒前
负责吃饭完成签到,获得积分10
5秒前
Bacian完成签到,获得积分10
6秒前
6秒前
缥缈不惜完成签到,获得积分10
6秒前
浮游应助熊猫海采纳,获得10
7秒前
xuxuux完成签到,获得积分10
7秒前
我是老大应助DDDD采纳,获得10
7秒前
毛果完成签到,获得积分10
8秒前
胖达发布了新的文献求助10
8秒前
8秒前
violet发布了新的文献求助10
8秒前
吴老师完成签到 ,获得积分10
8秒前
万能图书馆应助vv采纳,获得10
9秒前
浮游应助偶然的风41177采纳,获得10
9秒前
严三笑完成签到,获得积分10
10秒前
科研通AI6应助ethan采纳,获得10
11秒前
11秒前
打打应助张鱼丸子采纳,获得10
12秒前
13秒前
13秒前
13秒前
14秒前
凡夫俗子完成签到,获得积分10
15秒前
张丫丫发布了新的文献求助10
15秒前
16秒前
胖达完成签到,获得积分10
16秒前
叮叮叮发布了新的文献求助10
16秒前
郭郭要努力ya完成签到,获得积分0
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569802
求助须知:如何正确求助?哪些是违规求助? 4654951
关于积分的说明 14710692
捐赠科研通 4596026
什么是DOI,文献DOI怎么找? 2522224
邀请新用户注册赠送积分活动 1493421
关于科研通互助平台的介绍 1464030