Direction Aware Positional and Structural Encoding for Directed Graph Neural Networks

计算机科学 图形 理论计算机科学 节点(物理) 有向图 GSM演进的增强数据速率 水准点(测量) 无向图 代表(政治) 链接(几何体) 人工智能 组合数学 算法 数学 计算机网络 结构工程 大地测量学 政治 法学 政治学 工程类 地理
作者
Yonas Sium,Γεώργιος Κόλλιας,Tsuyoshi Idé,Payel Das,Naoki Abe,Aurélie Lozano,Qi Li
标识
DOI:10.1109/icassp49357.2023.10094964
摘要

We propose a novel method for computing joint 2-node structural representations for link prediction in directed graphs. Existing approaches can be grouped into two families. The first group of methods learn structural embeddings of individual nodes in the entire graph through a directed Graph Neural Network (GNNs), and then combine pairs of the encodings to get a representation for the respective node pairs. Methods in the second group compute a representation of the subgraph enclosing the two nodes by employing GNNs initialized with positional encodings and consider these as their potential edge embeddings. Both families of link prediction techniques suffer from considerable shortcomings: The former fail to differentiate two distant nodes with similar neighborhoods; The latter, although provably appropriate for learning edge representations, adopt undirected GNNs, positional encodings, and subgraphs, so the edge direction signal is inevitably lost. Our proposal is also based on the idea of enclosing subgraphs, but the subgraphs are assumed directed, and directed Graph Neural Networks (GNNs) are used to learn their node encodings and initial positional embeddings are direction-aware. Our emphasis on capturing the direction of edges is reflected in superior performance in the link prediction task against baselines with undirected GNNs on symmetrized enclosing subgraphs and existing directed GNNs over a collection of benchmark graph datasets. 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jouleken完成签到,获得积分10
刚刚
1秒前
zq00完成签到,获得积分10
1秒前
1秒前
斯文败类应助独木舟采纳,获得10
1秒前
易哒哒完成签到,获得积分10
1秒前
CCL应助QXS采纳,获得50
2秒前
大方安白完成签到,获得积分10
2秒前
Xxaaa完成签到,获得积分20
2秒前
张小敏完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
科研通AI2S应助Zhong采纳,获得10
4秒前
yidashi完成签到,获得积分10
4秒前
Kelvin.Tsi完成签到 ,获得积分10
4秒前
Island发布了新的文献求助10
5秒前
hu970发布了新的文献求助10
5秒前
九九发布了新的文献求助10
5秒前
123456完成签到,获得积分10
5秒前
BareBear应助龙妍琳采纳,获得10
5秒前
赘婿应助wary采纳,获得10
6秒前
小蘑菇应助wary采纳,获得10
6秒前
上官若男应助wary采纳,获得10
6秒前
李爱国应助木子采纳,获得10
6秒前
烟花应助马佳凯采纳,获得10
6秒前
6秒前
LYL完成签到,获得积分10
7秒前
7秒前
得意凡人完成签到,获得积分10
7秒前
7秒前
害怕的擎宇完成签到,获得积分10
8秒前
柳絮完成签到,获得积分20
8秒前
9秒前
赫连烙发布了新的文献求助10
9秒前
目遇给目遇的求助进行了留言
10秒前
Arnold发布了新的文献求助10
11秒前
在九月完成签到 ,获得积分10
11秒前
selfevidbet发布了新的文献求助30
11秒前
通~发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762