土壤水分
锰
生态系统
草原
陆地生态系统
单作
环境化学
环境科学
土壤科学
空间分布
化学
生态学
农学
地质学
生物
有机化学
遥感
作者
Alexandra Kravchenko,Jocelyn Richardson,Jin Ho Lee,Andrey Guber
标识
DOI:10.1021/acs.est.2c05403
摘要
Manganese (Mn) is known to be an active contributor to processing and cycling of soil organic carbon (C), yet the exact mechanisms behind its interactions with C are poorly understood. Plant diversity in terrestrial ecosystems drives feedback links between plant C inputs and soil pores, where the latter, in turn, impact the redox environment and Mn. This study examined associations between soil pores (>36 μm Ø) and Mn within intact soils from two grassland ecosystems, after their >6-year implementation in a replicated field experiment. We used μ-XRF imaging and XANES spectroscopy to explore spatial distribution patterns of Mn oxidation states, combined with X-ray computed microtomography and 2D zymography. A high plant diversity system (restored prairie) increased soil C and modified spatial distribution patterns of soil pores as compared to a single species system (monoculture switchgrass). In switchgrass, the abundance of oxidized and reduced Mn oxidation states varied with distance from pores consistently with anticipated O2 diffusion, while in the soil from restored prairie, the spatial patterns suggested that biological activity played a greater role in influencing Mn distributions. Based on the findings, we propose a hypothesis that Mn transformations promote C gains in soils of high plant diversity grasslands.
科研通智能强力驱动
Strongly Powered by AbleSci AI