Comprehensive performance exploration of a novel pumped-hydro based compressed air energy storage system with high energy storage density

火用 压缩空气储能 工艺工程 可用能 储能 可再生能源 环境科学 抽蓄发电 压缩空气 工程类 废物管理 机械工程 功率(物理) 分布式发电 电气工程 热力学 物理
作者
Erren Yao,Like Zhong,Yuan Zhang,Ruixiong Li,Huanran Wang,Guang Xi
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:14 (6) 被引量:9
标识
DOI:10.1063/5.0119831
摘要

A compressed air energy storage system is the key issue to facilitating the transformation of intermittent and fluctuant renewable energy sources into stable and high-quality power. The improvement of compression/expansion efficiency during operation processes is the first challenge faced by the compressed air energy storage system. Therefore, a novel pumped-hydro based compressed air energy storage system characterized by the advantages of high energy storage density and utilization efficiency is proposed in this study. To perform a comprehensive investigation on the system, the locations and magnitudes of irreversible sources within the system are estimated through the conventional exergy method, and the interactions among components and realistic potential for system performance improvement are identified by the advanced exergy method. The results indicate that the interactions among components are complex but not very significant since the endogenous exergy destruction is larger than the exogenous exergy destruction for all components within the system. Furthermore, the conventional exergy analysis reveals that the expander, compressor1, and pump are the most important components, accounting for 25.99%, 22.55%, and 15.34% of the total exergy destruction, respectively. Nevertheless, advanced exergy analysis recommends that the hydraulic turbine, pump, and expander have the optimization priorities since they share 28.61%, 27.72%, and 10.07% of the total endogenous avoidable exergy destruction. Finally, the overall system exergetic efficiency achieves a higher value of 18.49% under unavoidable conditions than that under real conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助小桥人独立采纳,获得10
1秒前
勤奋的人英完成签到,获得积分20
1秒前
winwin完成签到 ,获得积分20
2秒前
2秒前
3秒前
3秒前
梦溪发布了新的文献求助10
4秒前
DaisyYao发布了新的文献求助10
5秒前
共享精神应助曹梦梦采纳,获得10
5秒前
Huguizhou发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
AAA院士杰青批发完成签到,获得积分10
8秒前
Ava应助阿诺德采纳,获得10
8秒前
8秒前
zz完成签到,获得积分10
8秒前
完美世界应助21312WE2VC采纳,获得10
9秒前
9秒前
9秒前
王小小发布了新的文献求助10
10秒前
娜娜完成签到 ,获得积分10
10秒前
11秒前
木木发布了新的文献求助10
12秒前
Bailey完成签到,获得积分10
12秒前
13秒前
13秒前
王舒心关注了科研通微信公众号
13秒前
13秒前
14秒前
kidult完成签到,获得积分10
14秒前
15秒前
fugdu发布了新的文献求助10
15秒前
Hello应助友好太兰采纳,获得10
15秒前
17秒前
17秒前
hgy完成签到 ,获得积分10
18秒前
曹梦梦发布了新的文献求助10
19秒前
聪慧的白薇完成签到,获得积分20
19秒前
敏感向雪完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5630027
求助须知:如何正确求助?哪些是违规求助? 4721552
关于积分的说明 14972362
捐赠科研通 4788123
什么是DOI,文献DOI怎么找? 2556791
邀请新用户注册赠送积分活动 1517752
关于科研通互助平台的介绍 1478367