Integrated Adhesion Coefficient Estimation of 3D Road Surfaces Based on Dimensionless Data-Driven Tire Model

无量纲量 粘附 控制理论(社会学) 卡尔曼滤波器 机械 材料科学 结构工程 计算机科学 数学 工程类 复合材料 统计 控制(管理) 物理 人工智能
作者
Zhiwei Xu,Yongjie Lu,Na Chen,Yinfeng Han
出处
期刊:Machines [Multidisciplinary Digital Publishing Institute]
卷期号:11 (2): 189-189 被引量:4
标识
DOI:10.3390/machines11020189
摘要

The tire/road peak friction coefficient (TRPFC) is the core parameter of vehicle stability control, and its estimation accuracy significantly affects the control effect of active vehicle safety. To estimate the peak adhesion coefficient accurately, a new method for the comprehensive adhesion coefficient of three-dimensional pavement based on a dimensionless data-driven tire model is proposed. Firstly, in order to accurately describe the contact state between the three-dimensional road surface and the tire during driving, stress distribution and multi-point contact are introduced into the vertical dynamic model and a new tire model driven by dimensionless data is established based on the normalization method. Secondly, the real-time assessment of lateral and longitudinal adhesion coefficients of three-dimensional pavement is realized with the unscented Kalman filter (UKF). Finally, according to the coupling relationship between the longitudinal tire adhesion coefficient and the lateral tire adhesion coefficient, a fuzzy reasoning strategy of fusing the longitudinal tire adhesion coefficient and the lateral tire adhesion coefficient is designed. The results of vehicle tests prove that the method proposed in this paper can estimate the peak adhesion coefficient of pavement quickly and accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
思源应助地瓜小菜采纳,获得10
2秒前
Hello应助冷冷子采纳,获得10
2秒前
2秒前
2秒前
3秒前
笑点低黄豆完成签到,获得积分10
3秒前
3秒前
嗯嗯我很好真的完成签到,获得积分10
4秒前
4秒前
馨妈完成签到,获得积分20
4秒前
5秒前
5秒前
Zjc0913完成签到 ,获得积分10
5秒前
6秒前
cc发布了新的文献求助10
8秒前
9秒前
ED应助李进步采纳,获得10
9秒前
10秒前
10秒前
巾帼发布了新的文献求助10
10秒前
Orange应助nana湘采纳,获得30
10秒前
小李吃小孩完成签到,获得积分10
11秒前
LiM完成签到,获得积分10
11秒前
12秒前
年轻迪奥完成签到,获得积分10
12秒前
星辰大海应助小金鱼儿采纳,获得10
12秒前
13秒前
Huang发布了新的文献求助10
13秒前
睿诺应助王子采纳,获得10
13秒前
14秒前
14秒前
14秒前
15秒前
lzh发布了新的文献求助10
15秒前
dounai完成签到,获得积分10
15秒前
完美世界应助不二臣采纳,获得10
16秒前
16秒前
Ava应助狂野忆文采纳,获得10
16秒前
Justtry发布了新的文献求助10
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961675
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139238
捐赠科研通 3240579
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803326