Continuous covering on networks: Improved mixed integer programming formulations

整数规划 整数(计算机科学) 线性规划 数学优化 GSM演进的增强数据速率 数学 线性规划松弛 计算机科学 半径 树(集合论) 集合(抽象数据类型) 可扩展性 点(几何) 概括性 组合数学 几何学 程序设计语言 心理治疗师 数据库 电信 计算机安全 心理学
作者
Mercedes Pelegrín,Liding Xu
出处
期刊:Omega [Elsevier]
卷期号:117: 102835-102835 被引量:5
标识
DOI:10.1016/j.omega.2023.102835
摘要

Covering problems are well-studied in the domain of Operations Research, and, more specifically, in Location Science. When the location space is a network, the most frequent assumption is to consider the candidate facility locations, the points to be covered, or both, to be finite sets. In this work, we study the set-covering location problem when both candidate locations and demand points are continuous on a network. This variant has received little attention, and the scarce existing approaches have focused on particular cases, such as tree networks and integer covering radius. Here we study the general problem and present a Mixed Integer Linear Programming formulation (MILP) for networks with edge lengths no greater than the covering radius. The model does not lose generality, as any edge not satisfying this condition can be partitioned into subedges of appropriate lengths without changing the problem. We propose a preprocessing algorithm to reduce the size of the MILP, and devise tight big-M constants and valid inequalities to strengthen our formulations. Moreover, a second MILP is proposed, which admits edge lengths greater than the covering radius. As opposed to existing formulations of the problem (including the first MILP proposed herein), the number of variables and constraints of this second model does not depend on the lengths of the network's edges. This second model represents a scalable approach that particularly suits real-world networks, whose edges are usually greater than the covering radius. Our computational experiments show the strengths and limitations of our exact approach to both real-world and random networks. Our formulations are also tested against an existing exact method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冲冲冲完成签到,获得积分10
1秒前
2秒前
带头大哥应助ZZ采纳,获得30
3秒前
Fighting完成签到,获得积分10
4秒前
liu6677完成签到 ,获得积分10
4秒前
孤海未蓝完成签到,获得积分10
5秒前
加载文献别卡了完成签到,获得积分10
5秒前
不见花绚丽完成签到,获得积分10
6秒前
二毛完成签到,获得积分10
6秒前
默蟹完成签到,获得积分10
8秒前
科研通AI2S应助Fighting采纳,获得10
8秒前
9秒前
7799发布了新的文献求助10
9秒前
ECT完成签到,获得积分10
10秒前
华仔应助明正采纳,获得10
10秒前
Nicole完成签到 ,获得积分10
11秒前
读研好难发布了新的文献求助10
13秒前
14秒前
16秒前
科研通AI2S应助爽o采纳,获得10
19秒前
淡定草丛完成签到 ,获得积分10
19秒前
潇洒的小鸽子完成签到 ,获得积分10
19秒前
lihn完成签到,获得积分10
20秒前
彪壮的幻丝完成签到 ,获得积分10
20秒前
fighting完成签到,获得积分20
20秒前
耍酷的白山完成签到,获得积分10
20秒前
20秒前
乐观的雁易完成签到 ,获得积分10
20秒前
Daniel完成签到,获得积分10
21秒前
子车代芙完成签到,获得积分10
22秒前
鲲鹏戏龙完成签到,获得积分10
22秒前
动听的笑南完成签到,获得积分10
23秒前
努力的学完成签到,获得积分10
23秒前
cindy完成签到 ,获得积分10
24秒前
吐司匹林完成签到 ,获得积分10
25秒前
hebhm完成签到,获得积分10
25秒前
好困完成签到,获得积分0
25秒前
26秒前
一杯双皮奶完成签到,获得积分20
27秒前
郑洲完成签到 ,获得积分10
29秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229819
求助须知:如何正确求助?哪些是违规求助? 2877393
关于积分的说明 8198973
捐赠科研通 2544788
什么是DOI,文献DOI怎么找? 1374662
科研通“疑难数据库(出版商)”最低求助积分说明 647033
邀请新用户注册赠送积分活动 621851