Continuous covering on networks: Improved mixed integer programming formulations

整数规划 整数(计算机科学) 线性规划 数学优化 GSM演进的增强数据速率 数学 线性规划松弛 计算机科学 半径 树(集合论) 集合(抽象数据类型) 可扩展性 点(几何) 概括性 组合数学 几何学 程序设计语言 心理治疗师 数据库 电信 计算机安全 心理学
作者
Mercedes Pelegrín,Liding Xu
出处
期刊:Omega [Elsevier]
卷期号:117: 102835-102835 被引量:5
标识
DOI:10.1016/j.omega.2023.102835
摘要

Covering problems are well-studied in the domain of Operations Research, and, more specifically, in Location Science. When the location space is a network, the most frequent assumption is to consider the candidate facility locations, the points to be covered, or both, to be finite sets. In this work, we study the set-covering location problem when both candidate locations and demand points are continuous on a network. This variant has received little attention, and the scarce existing approaches have focused on particular cases, such as tree networks and integer covering radius. Here we study the general problem and present a Mixed Integer Linear Programming formulation (MILP) for networks with edge lengths no greater than the covering radius. The model does not lose generality, as any edge not satisfying this condition can be partitioned into subedges of appropriate lengths without changing the problem. We propose a preprocessing algorithm to reduce the size of the MILP, and devise tight big-M constants and valid inequalities to strengthen our formulations. Moreover, a second MILP is proposed, which admits edge lengths greater than the covering radius. As opposed to existing formulations of the problem (including the first MILP proposed herein), the number of variables and constraints of this second model does not depend on the lengths of the network's edges. This second model represents a scalable approach that particularly suits real-world networks, whose edges are usually greater than the covering radius. Our computational experiments show the strengths and limitations of our exact approach to both real-world and random networks. Our formulations are also tested against an existing exact method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
TvT关注了科研通微信公众号
3秒前
我是熊大完成签到 ,获得积分10
3秒前
4秒前
符兴岛完成签到 ,获得积分10
4秒前
4秒前
星辰大海应助zyy采纳,获得10
5秒前
北地风情应助CHBW采纳,获得50
6秒前
HAHA发布了新的文献求助10
6秒前
HAHA发布了新的文献求助10
7秒前
HAHA发布了新的文献求助10
7秒前
LiuJin完成签到,获得积分10
8秒前
HAHA发布了新的文献求助10
8秒前
Sprite666发布了新的文献求助10
9秒前
晴乐令完成签到,获得积分10
9秒前
11秒前
11秒前
学术菜鸟完成签到,获得积分10
13秒前
Motorhead完成签到,获得积分10
14秒前
15秒前
Sprite666完成签到,获得积分10
16秒前
田様应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
Joker完成签到,获得积分0
17秒前
慕青应助科研通管家采纳,获得10
17秒前
大个应助科研通管家采纳,获得10
17秒前
17秒前
科研通AI6应助科研通管家采纳,获得30
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
cinn应助科研通管家采纳,获得10
17秒前
orixero应助科研通管家采纳,获得10
17秒前
18秒前
量子星尘发布了新的文献求助10
20秒前
banegor完成签到 ,获得积分10
21秒前
seekingalone完成签到,获得积分10
22秒前
23秒前
锋宇完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419479
求助须知:如何正确求助?哪些是违规求助? 4534726
关于积分的说明 14146477
捐赠科研通 4451326
什么是DOI,文献DOI怎么找? 2441717
邀请新用户注册赠送积分活动 1433274
关于科研通互助平台的介绍 1410587