已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Novel Parameter Adaptive Dual Channel MSPCNN Based Single Image Dehazing for Intelligent Transportation Systems

薄雾 能见度 计算机科学 计算机视觉 人工智能 亮度 频道(广播) 现场可编程门阵列 图像(数学) 计算机硬件 电信 光学 物理 气象学
作者
Geet Sahu,Ayan Seal,Debotosh Bhattacharjee,Robert Frischer,Ondřej Krejcar
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (3): 3027-3047 被引量:31
标识
DOI:10.1109/tits.2022.3225797
摘要

Visibility issues in intelligent transportation systems are exacerbated by bad weather conditions such as fog and haze. It has been observed from recent studies that major road accidents have occurred in the world due to low visibility and inclement weather conditions. Single image dehazing attempts to restore a haze-free image from an unconstrained hazy image. We proposed a dehazing method by cascading two models utilizing a novel parameter-adaptive dual-channel modified simplified pulse coupled neural network (PA-DC-MSPCNN). The first model uses a new color channel for removing haze from images. The second model is the improved brightness preserving model (I-GIHE), which retains the brightness of the image while improving the gradient strength. To integrate the results from these two models and provide a pleasing haze-free image, a PA-DC-MSPCNN-based fusion is used. Furthermore, the proposed approach is deployed on a Xilinx Zynq SoC by exploiting the recently released PYNQ platform. The dehazing system runs on a PYNQ-Z2 all-programmable SoC platform, where it will input the camera feed through the FPGA unit and carry out the dehazing algorithm in the ARM core. This configuration has allowed reaching real-time processing speed for image dehazing. The results of dehazing are analyzed using both synthetic and real-world hazy images. Synthetic hazy images are acquired from the O-HAZE, I-HAZE, SOTS, and FRIDA datasets, while real-world hazy images are taken from the RailSem19, E-TUVD dataset, and the internet. For evaluation, twelve cutting-edge approaches are chosen. The proposed method is also analyzed on underwater and low-light images. Extensive experiments indicate that the proposed method outperforms state-of-the-art methods of qualitative and quantitative performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
chendm发布了新的文献求助10
2秒前
上善若水完成签到 ,获得积分10
3秒前
3秒前
5秒前
科研通AI5应助shihshi采纳,获得30
5秒前
6秒前
我鬼混回来了完成签到 ,获得积分10
6秒前
完美世界应助啦啦啦啦采纳,获得10
8秒前
健忘泽洋发布了新的文献求助20
9秒前
10秒前
10秒前
在水一方应助路旁小白采纳,获得10
10秒前
袁大头发布了新的文献求助10
11秒前
张张完成签到 ,获得积分10
13秒前
14秒前
zjcbk985发布了新的文献求助10
16秒前
16秒前
多巴胺发布了新的文献求助10
16秒前
17秒前
妖妖完成签到 ,获得积分10
17秒前
shella关注了科研通微信公众号
17秒前
领导范儿应助week采纳,获得30
17秒前
17秒前
充电宝应助HBY采纳,获得10
20秒前
chendm完成签到,获得积分10
22秒前
zjcbk985完成签到,获得积分10
22秒前
冷酷哈密瓜完成签到,获得积分10
25秒前
28秒前
dddmk发布了新的文献求助10
28秒前
柳雅青完成签到 ,获得积分10
31秒前
英俊的铭应助芋头采纳,获得10
31秒前
科研通AI5应助五月采纳,获得10
32秒前
顾矜应助alex采纳,获得10
35秒前
xrl完成签到,获得积分10
36秒前
39秒前
春野花枝完成签到,获得积分10
40秒前
灰灰12138完成签到,获得积分10
41秒前
12Yohann完成签到,获得积分10
42秒前
小蘑菇应助微笑的雪糕采纳,获得10
45秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561680
求助须知:如何正确求助?哪些是违规求助? 3135271
关于积分的说明 9411778
捐赠科研通 2835787
什么是DOI,文献DOI怎么找? 1558642
邀请新用户注册赠送积分活动 728413
科研通“疑难数据库(出版商)”最低求助积分说明 716806