Multiscale Feature Enhancement Network for Salient Object Detection in Optical Remote Sensing Images

计算机科学 特征(语言学) 合成孔径雷达 人工智能 特征提取 计算机视觉 模式识别(心理学) 散斑噪声 斑点图案 遥感 语言学 地质学 哲学
作者
Zhen Wang,Jianxin Guo,Chuanlei Zhang,Buhong Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-19 被引量:92
标识
DOI:10.1109/tgrs.2022.3224815
摘要

Aircraft detection in synthetic aperture radar (SAR) images plays an essential role in satellite observation and military decisions. Due to discrete scattering properties, speckle noise interference, and various aircraft types, many existing methods struggle to achieve the desired detection performance. In this article, we propose an innovative semantic condition constraint guided feature aware network (SCFNet) for detecting different aircraft categories in SAR images. First, considering the discrete scattering properties of aircraft, we design a local-global feature aware module (LGA-M) and morphological-semantic feature aware module (MSF-M), which can effectively extract the fine-grained feature information contained in SAR images. Second, to effectively fuse different feature information, we construct a feature fusion pyramid (FFP), which uses different branches and paths to reasonably merge multiple feature information types and suppresses background information interference. Third, according to the structure characteristics of aircraft, the global coordinate attention mechanism (G-CAT) is presented to highlight foreground target features and suppress speckle noise interference. Finally, we construct semantic condition constraints, including constraint condition setting, semantic information calculation, and template matching, to improve aircraft localization and recognition accuracy. Extensive experiments demonstrate that the proposed SCFNet can obtain state-of-the-art performance on the SAR aircraft detection dataset, which achieves AP and F1 Score of 94.83% and 95.58%, respectively. The related implementation codes will be made publicly available at https://github.com/darkseid-arch/AirDetection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助oleskarabach采纳,获得10
刚刚
幸运的姜姜应助oleskarabach采纳,获得10
刚刚
2秒前
浮游应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得20
3秒前
北沐城歌应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得30
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
ysy完成签到,获得积分10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
苏苏应助科研通管家采纳,获得10
4秒前
AN完成签到,获得积分10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
wop111应助科研通管家采纳,获得10
4秒前
搜集达人应助草莓采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
5秒前
5秒前
5秒前
斯文败类应助水水的采纳,获得10
5秒前
Owen应助科研助理采纳,获得10
6秒前
北冥风完成签到,获得积分20
6秒前
Owen应助11111采纳,获得50
7秒前
lory发布了新的文献求助10
9秒前
hanshuwen发布了新的文献求助10
9秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453804
求助须知:如何正确求助?哪些是违规求助? 4561313
关于积分的说明 14282182
捐赠科研通 4485290
什么是DOI,文献DOI怎么找? 2456660
邀请新用户注册赠送积分活动 1447348
关于科研通互助平台的介绍 1422701