Multiscale Feature Enhancement Network for Salient Object Detection in Optical Remote Sensing Images

计算机科学 特征(语言学) 合成孔径雷达 人工智能 特征提取 计算机视觉 模式识别(心理学) 散斑噪声 斑点图案 遥感 语言学 地质学 哲学
作者
Zhen Wang,Jianxin Guo,Chuanlei Zhang,Buhong Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-19 被引量:92
标识
DOI:10.1109/tgrs.2022.3224815
摘要

Aircraft detection in synthetic aperture radar (SAR) images plays an essential role in satellite observation and military decisions. Due to discrete scattering properties, speckle noise interference, and various aircraft types, many existing methods struggle to achieve the desired detection performance. In this article, we propose an innovative semantic condition constraint guided feature aware network (SCFNet) for detecting different aircraft categories in SAR images. First, considering the discrete scattering properties of aircraft, we design a local-global feature aware module (LGA-M) and morphological-semantic feature aware module (MSF-M), which can effectively extract the fine-grained feature information contained in SAR images. Second, to effectively fuse different feature information, we construct a feature fusion pyramid (FFP), which uses different branches and paths to reasonably merge multiple feature information types and suppresses background information interference. Third, according to the structure characteristics of aircraft, the global coordinate attention mechanism (G-CAT) is presented to highlight foreground target features and suppress speckle noise interference. Finally, we construct semantic condition constraints, including constraint condition setting, semantic information calculation, and template matching, to improve aircraft localization and recognition accuracy. Extensive experiments demonstrate that the proposed SCFNet can obtain state-of-the-art performance on the SAR aircraft detection dataset, which achieves AP and F1 Score of 94.83% and 95.58%, respectively. The related implementation codes will be made publicly available at https://github.com/darkseid-arch/AirDetection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TIPHA发布了新的文献求助10
刚刚
艾欧大贝发布了新的文献求助10
1秒前
赘婿应助XYT采纳,获得10
1秒前
科研通AI5应助SONG采纳,获得10
1秒前
1秒前
1秒前
美好向日葵完成签到,获得积分10
2秒前
3秒前
彭于晏应助Sarah采纳,获得10
3秒前
深情安青应助激情的一斩采纳,获得10
3秒前
火星上如松完成签到 ,获得积分10
4秒前
孔大漂亮发布了新的文献求助10
4秒前
Huang_Liuying应助毛毛弟采纳,获得10
5秒前
5秒前
5秒前
你今天学了多少完成签到 ,获得积分10
5秒前
萌小鱼完成签到 ,获得积分10
6秒前
眼睛大的冷风完成签到 ,获得积分10
6秒前
共享精神应助wxj采纳,获得10
6秒前
CCL应助ZHT采纳,获得20
7秒前
万能图书馆应助zwxzwx采纳,获得10
7秒前
CodeCraft应助Lll采纳,获得10
7秒前
hm发布了新的文献求助10
8秒前
9秒前
水shui完成签到,获得积分10
9秒前
浮游应助冯淑婷采纳,获得10
9秒前
10秒前
小老虎Milly完成签到,获得积分10
10秒前
wanci应助艾欧大贝采纳,获得10
10秒前
11秒前
个性初夏发布了新的文献求助10
11秒前
yu完成签到,获得积分10
12秒前
科研通AI5应助落后鞋子采纳,获得10
13秒前
14秒前
Wang发布了新的文献求助10
14秒前
于海阔关注了科研通微信公众号
15秒前
15秒前
力劈华山完成签到,获得积分10
15秒前
顾矜应助流川采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097188
求助须知:如何正确求助?哪些是违规求助? 4309756
关于积分的说明 13428112
捐赠科研通 4137185
什么是DOI,文献DOI怎么找? 2266508
邀请新用户注册赠送积分活动 1269609
关于科研通互助平台的介绍 1205917