Multiscale Feature Enhancement Network for Salient Object Detection in Optical Remote Sensing Images

计算机科学 特征(语言学) 合成孔径雷达 人工智能 特征提取 计算机视觉 模式识别(心理学) 散斑噪声 斑点图案 遥感 语言学 地质学 哲学
作者
Zhen Wang,Jianxin Guo,Chuanlei Zhang,Buhong Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-19 被引量:92
标识
DOI:10.1109/tgrs.2022.3224815
摘要

Aircraft detection in synthetic aperture radar (SAR) images plays an essential role in satellite observation and military decisions. Due to discrete scattering properties, speckle noise interference, and various aircraft types, many existing methods struggle to achieve the desired detection performance. In this article, we propose an innovative semantic condition constraint guided feature aware network (SCFNet) for detecting different aircraft categories in SAR images. First, considering the discrete scattering properties of aircraft, we design a local-global feature aware module (LGA-M) and morphological-semantic feature aware module (MSF-M), which can effectively extract the fine-grained feature information contained in SAR images. Second, to effectively fuse different feature information, we construct a feature fusion pyramid (FFP), which uses different branches and paths to reasonably merge multiple feature information types and suppresses background information interference. Third, according to the structure characteristics of aircraft, the global coordinate attention mechanism (G-CAT) is presented to highlight foreground target features and suppress speckle noise interference. Finally, we construct semantic condition constraints, including constraint condition setting, semantic information calculation, and template matching, to improve aircraft localization and recognition accuracy. Extensive experiments demonstrate that the proposed SCFNet can obtain state-of-the-art performance on the SAR aircraft detection dataset, which achieves AP and F1 Score of 94.83% and 95.58%, respectively. The related implementation codes will be made publicly available at https://github.com/darkseid-arch/AirDetection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
面包发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
斯文败类应助欣慰的忆梅采纳,获得10
1秒前
笑忘书完成签到,获得积分10
2秒前
犹豫友梅发布了新的文献求助10
2秒前
Kakoala发布了新的文献求助10
2秒前
2秒前
安.发布了新的文献求助10
2秒前
1525589136完成签到,获得积分10
2秒前
2秒前
王小聪明发布了新的文献求助20
3秒前
冂xx易云完成签到,获得积分10
3秒前
派小星完成签到,获得积分10
3秒前
5秒前
浮游应助好运6连采纳,获得10
5秒前
思源应助王京华采纳,获得10
5秒前
YT发布了新的文献求助10
5秒前
活泼的芹菜完成签到,获得积分10
6秒前
畅快远山发布了新的文献求助10
6秒前
小波完成签到,获得积分20
6秒前
6秒前
mingjie完成签到,获得积分10
7秒前
7秒前
7秒前
沉默清发布了新的文献求助10
7秒前
7秒前
卢玥沅完成签到 ,获得积分10
7秒前
7秒前
fyjlfy发布了新的文献求助10
8秒前
Xin完成签到,获得积分10
8秒前
ww完成签到,获得积分10
8秒前
9秒前
9秒前
xh发布了新的文献求助10
9秒前
Jasper应助1243437374采纳,获得10
10秒前
wsx发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473404
求助须知:如何正确求助?哪些是违规求助? 4575556
关于积分的说明 14353248
捐赠科研通 4503084
什么是DOI,文献DOI怎么找? 2467419
邀请新用户注册赠送积分活动 1455329
关于科研通互助平台的介绍 1429357