Multiscale Feature Enhancement Network for Salient Object Detection in Optical Remote Sensing Images

计算机科学 特征(语言学) 合成孔径雷达 人工智能 特征提取 计算机视觉 模式识别(心理学) 散斑噪声 斑点图案 遥感 语言学 地质学 哲学
作者
Zhen Wang,Jianxin Guo,Chuanlei Zhang,Buhong Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-19 被引量:62
标识
DOI:10.1109/tgrs.2022.3224815
摘要

Aircraft detection in synthetic aperture radar (SAR) images plays an essential role in satellite observation and military decisions. Due to discrete scattering properties, speckle noise interference, and various aircraft types, many existing methods struggle to achieve the desired detection performance. In this article, we propose an innovative semantic condition constraint guided feature aware network (SCFNet) for detecting different aircraft categories in SAR images. First, considering the discrete scattering properties of aircraft, we design a local-global feature aware module (LGA-M) and morphological-semantic feature aware module (MSF-M), which can effectively extract the fine-grained feature information contained in SAR images. Second, to effectively fuse different feature information, we construct a feature fusion pyramid (FFP), which uses different branches and paths to reasonably merge multiple feature information types and suppresses background information interference. Third, according to the structure characteristics of aircraft, the global coordinate attention mechanism (G-CAT) is presented to highlight foreground target features and suppress speckle noise interference. Finally, we construct semantic condition constraints, including constraint condition setting, semantic information calculation, and template matching, to improve aircraft localization and recognition accuracy. Extensive experiments demonstrate that the proposed SCFNet can obtain state-of-the-art performance on the SAR aircraft detection dataset, which achieves AP and F1 Score of 94.83% and 95.58%, respectively. The related implementation codes will be made publicly available at https://github.com/darkseid-arch/AirDetection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
激昂的沛柔完成签到,获得积分10
1秒前
充电宝应助dadada采纳,获得10
1秒前
斯文小白菜完成签到,获得积分10
1秒前
2秒前
kiminonawa应助奋斗飞飞采纳,获得10
4秒前
朴素巧荷完成签到,获得积分10
4秒前
cs完成签到,获得积分10
4秒前
菜鸡完成签到,获得积分10
5秒前
6秒前
昏睡的以寒完成签到,获得积分10
8秒前
卢浩发布了新的文献求助10
8秒前
Jasper应助雪花采纳,获得10
8秒前
Yishai_Song发布了新的文献求助10
10秒前
11秒前
莫离完成签到,获得积分20
12秒前
香蕉觅云应助顾易采纳,获得10
13秒前
hl应助六七采纳,获得10
14秒前
搞怪迎夏应助兔兔采纳,获得50
15秒前
英俊的铭应助莫离采纳,获得10
16秒前
www完成签到 ,获得积分10
19秒前
liuhulang完成签到,获得积分10
19秒前
19秒前
oceanao应助科研通管家采纳,获得10
22秒前
小马甲应助科研通管家采纳,获得10
22秒前
斯文败类应助科研通管家采纳,获得10
22秒前
在水一方应助科研通管家采纳,获得10
22秒前
加菲丰丰应助科研通管家采纳,获得20
22秒前
22秒前
22秒前
22秒前
烟花应助1huiqina采纳,获得30
23秒前
JamesPei应助卢浩采纳,获得30
24秒前
DIPLO完成签到,获得积分10
24秒前
酶没美镁发布了新的文献求助10
24秒前
英姑应助liuhulang采纳,获得10
25秒前
25秒前
27秒前
28秒前
ccc完成签到,获得积分10
30秒前
LL发布了新的文献求助10
30秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170294
求助须知:如何正确求助?哪些是违规求助? 2821513
关于积分的说明 7934472
捐赠科研通 2481722
什么是DOI,文献DOI怎么找? 1322096
科研通“疑难数据库(出版商)”最低求助积分说明 633481
版权声明 602608