Multiscale Feature Enhancement Network for Salient Object Detection in Optical Remote Sensing Images

计算机科学 特征(语言学) 合成孔径雷达 人工智能 特征提取 计算机视觉 模式识别(心理学) 散斑噪声 斑点图案 遥感 语言学 地质学 哲学
作者
Zhen Wang,Jianxin Guo,Chuanlei Zhang,Buhong Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-19 被引量:92
标识
DOI:10.1109/tgrs.2022.3224815
摘要

Aircraft detection in synthetic aperture radar (SAR) images plays an essential role in satellite observation and military decisions. Due to discrete scattering properties, speckle noise interference, and various aircraft types, many existing methods struggle to achieve the desired detection performance. In this article, we propose an innovative semantic condition constraint guided feature aware network (SCFNet) for detecting different aircraft categories in SAR images. First, considering the discrete scattering properties of aircraft, we design a local-global feature aware module (LGA-M) and morphological-semantic feature aware module (MSF-M), which can effectively extract the fine-grained feature information contained in SAR images. Second, to effectively fuse different feature information, we construct a feature fusion pyramid (FFP), which uses different branches and paths to reasonably merge multiple feature information types and suppresses background information interference. Third, according to the structure characteristics of aircraft, the global coordinate attention mechanism (G-CAT) is presented to highlight foreground target features and suppress speckle noise interference. Finally, we construct semantic condition constraints, including constraint condition setting, semantic information calculation, and template matching, to improve aircraft localization and recognition accuracy. Extensive experiments demonstrate that the proposed SCFNet can obtain state-of-the-art performance on the SAR aircraft detection dataset, which achieves AP and F1 Score of 94.83% and 95.58%, respectively. The related implementation codes will be made publicly available at https://github.com/darkseid-arch/AirDetection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助1816013153采纳,获得30
刚刚
FashionBoy应助小胡爱学习采纳,获得10
1秒前
今后应助拾柒采纳,获得10
1秒前
sun完成签到,获得积分10
2秒前
Ava应助陈篱采纳,获得10
2秒前
生动的豆芽完成签到 ,获得积分10
2秒前
123321完成签到,获得积分10
3秒前
庞mou完成签到,获得积分10
3秒前
LingC完成签到,获得积分10
4秒前
小可发布了新的文献求助10
6秒前
coolkid完成签到 ,获得积分0
8秒前
9秒前
10秒前
10秒前
13秒前
14秒前
15秒前
16秒前
巩志成完成签到,获得积分10
17秒前
wxyshare举报害羞映容求助涉嫌违规
17秒前
17秒前
Pan完成签到,获得积分10
19秒前
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
嘿嘿发布了新的文献求助10
21秒前
cccui发布了新的文献求助10
21秒前
escape完成签到,获得积分10
24秒前
无花果应助Guan采纳,获得10
24秒前
24秒前
小胡爱学习完成签到,获得积分10
24秒前
果冻呀发布了新的文献求助10
25秒前
Owen应助科研苦行僧采纳,获得10
25秒前
26秒前
jia发布了新的文献求助10
26秒前
27秒前
wsy发布了新的文献求助20
27秒前
wyx发布了新的文献求助10
30秒前
escape发布了新的文献求助10
30秒前
Bonnie完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536900
求助须知:如何正确求助?哪些是违规求助? 4624585
关于积分的说明 14592312
捐赠科研通 4565008
什么是DOI,文献DOI怎么找? 2502121
邀请新用户注册赠送积分活动 1480851
关于科研通互助平台的介绍 1452093