Multiscale Feature Enhancement Network for Salient Object Detection in Optical Remote Sensing Images

计算机科学 特征(语言学) 合成孔径雷达 人工智能 特征提取 计算机视觉 模式识别(心理学) 散斑噪声 斑点图案 遥感 语言学 地质学 哲学
作者
Zhen Wang,Jianxin Guo,Chuanlei Zhang,Buhong Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-19 被引量:92
标识
DOI:10.1109/tgrs.2022.3224815
摘要

Aircraft detection in synthetic aperture radar (SAR) images plays an essential role in satellite observation and military decisions. Due to discrete scattering properties, speckle noise interference, and various aircraft types, many existing methods struggle to achieve the desired detection performance. In this article, we propose an innovative semantic condition constraint guided feature aware network (SCFNet) for detecting different aircraft categories in SAR images. First, considering the discrete scattering properties of aircraft, we design a local-global feature aware module (LGA-M) and morphological-semantic feature aware module (MSF-M), which can effectively extract the fine-grained feature information contained in SAR images. Second, to effectively fuse different feature information, we construct a feature fusion pyramid (FFP), which uses different branches and paths to reasonably merge multiple feature information types and suppresses background information interference. Third, according to the structure characteristics of aircraft, the global coordinate attention mechanism (G-CAT) is presented to highlight foreground target features and suppress speckle noise interference. Finally, we construct semantic condition constraints, including constraint condition setting, semantic information calculation, and template matching, to improve aircraft localization and recognition accuracy. Extensive experiments demonstrate that the proposed SCFNet can obtain state-of-the-art performance on the SAR aircraft detection dataset, which achieves AP and F1 Score of 94.83% and 95.58%, respectively. The related implementation codes will be made publicly available at https://github.com/darkseid-arch/AirDetection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nian完成签到 ,获得积分10
刚刚
2秒前
11完成签到,获得积分10
2秒前
安详砖家发布了新的文献求助10
2秒前
3秒前
EMMACao完成签到,获得积分10
3秒前
xky200125完成签到 ,获得积分10
4秒前
超级板凳完成签到,获得积分10
5秒前
rationality完成签到,获得积分10
5秒前
jojo完成签到 ,获得积分10
6秒前
Jay发布了新的文献求助10
7秒前
7秒前
zyn发布了新的文献求助10
7秒前
传奇3应助ei采纳,获得10
10秒前
7分运气完成签到,获得积分10
10秒前
MARIO发布了新的文献求助10
12秒前
小呆鹿完成签到,获得积分10
12秒前
天真的白凡完成签到 ,获得积分10
14秒前
YG完成签到,获得积分10
14秒前
14秒前
15秒前
QiJiLuLu完成签到,获得积分10
16秒前
无花果应助ATOM采纳,获得10
16秒前
Werner完成签到 ,获得积分10
16秒前
16秒前
17秒前
乐乐完成签到 ,获得积分10
17秒前
19秒前
初初见你发布了新的文献求助10
19秒前
Rui_Rui发布了新的文献求助10
20秒前
合适清完成签到,获得积分10
21秒前
自然幻竹完成签到,获得积分10
21秒前
渣渣凡完成签到,获得积分10
22秒前
automan发布了新的文献求助10
22秒前
23秒前
yang完成签到,获得积分10
24秒前
桑榆发布了新的文献求助10
25秒前
NexusExplorer应助LPP采纳,获得10
27秒前
香蕉觅云应助chiweiyoung采纳,获得10
27秒前
28秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339290
求助须知:如何正确求助?哪些是违规求助? 4476138
关于积分的说明 13930647
捐赠科研通 4371604
什么是DOI,文献DOI怎么找? 2401978
邀请新用户注册赠送积分活动 1394933
关于科研通互助平台的介绍 1366848