水溶液
水溶液中的金属离子
吸附
共价键
部分
化学
共价有机骨架
荧光
胍
催化作用
解吸
共轭体系
聚合物
无机化学
金属
有机化学
物理
量子力学
作者
Sribash Das,Gunanka Hazarika,Debasis Manna
标识
DOI:10.1002/chem.202203595
摘要
Palladium is a key element in fuel cells, electronic industries, and organic catalysis. At the same time, chromium is essential in leather, electroplating, and metallurgical industries. However, their unpremeditated leakage into aquatic systems has caused human health and environmental apprehensions. Herein, we reported the development of an sp2 carbon-conjugated fluorescent covalent organic framework with a guanidine moiety (sp2 c-gCOF) that showed excellent thermal and chemical stability. The sp2 c-gCOF showed effective sensing, capture, and recovery/removal of Pd(II) and Cr(VI) ions, which could be due to the highly accessible pore walls decorated with guanidine moieties. The fluorescent sp2 c-gCOF showed higher selectivity for Pd(II) and Cr(VI) ions, with an ultra-low detection limit of 2.7 and 3.2 nM, respectively. The analysis of the adsorption properties with a pseudo-second-order kinetic model showed that sp2 c-gCOF could successfully and selectively remove both Pd(II) and Cr(VI) ions from aqueous solutions. The polymer also showed excellent capture efficacy even after seven consecutive adsorption-desorption cycles. Hence, this study reveals the potential of fluorescent sp2 c-gCOF for detecting, removing, and recovering valuable metals and hazardous ions from wastewater, which would be useful for economic benefit, environmental safety, human health, and sustainability. The post-synthetic modification of sp2 c-COF with suitable functionalities could also be useful for sensing and extracting other water pollutants and valuable materials from an aqueous system.
科研通智能强力驱动
Strongly Powered by AbleSci AI