Component Prediction of Antai Pills Based on One-Dimensional Convolutional Neural Network and Near-Infrared Spectroscopy

支持向量机 偏最小二乘回归 均方误差 人工智能 卷积神经网络 数学 模式识别(心理学) 交叉验证 决定系数 相关系数 计算机科学 统计
作者
Tuo Guo,Fengjie Xu,Jinfang Ma,Fahuan Ge
出处
期刊:Journal of spectroscopy [Hindawi Limited]
卷期号:2022: 1-10 被引量:2
标识
DOI:10.1155/2022/6875022
摘要

Convolutional neural networks (CNNs) are widely used for image recognition and text analysis and have been suggested for application on one-dimensional data as a way to reduce the need for preprocessing steps. In this study, the performance of one-dimensional convolutional neural network (1DCNN) machine learning algorithm was investigated for regression analysis of Antai pills spectral data. This algorithm was compared with other chemometric methods, including support vector machine regression (SVR) and partial least-square regression (PLSR) methods. The results showed that the 1DCNN model outperformed the PLSR and SVR models with similar data preprocessing for the three analytes (wogonoside, scutellarin, and ferulic acid) in Antai pills. Taking wogonoside as an example, the indices such as the correction coefficient of determination ( R v 2 ), the root mean-squared error of cross validation (RMSECV) for calibration set, the prediction coefficient of determination ( R p 2 ), and the root mean-squared error of prediction (RMSEP) obtained by PLSR modeling were 0.9340, 0.5568, 0.9491, and 0.5088; the indices obtained by SVR modeling were 0.9520, 0.4816, 0.9667, and 0.4117; and the indices obtained by 1DCNN modeling were 0.9683, 0.3397, 0.9845, and 0.2807, respectively. The evaluation metrics of 1DCNN are better than those of PLSR and SVR, and the prediction effect is the best, proving that 1DCNN has a good generalization ability. Especially with outliers of spectra, PLSR’s R p 2 decreased by 0.0181, SVR’s R v 2 decreased by 0.01, and 1DCNN’s R v 2 increased by 0.0009 and R p 2 decreased by 0.0057. The evaluation indices of 1DCNN have no significant change in comparison with no outliers and can still show good performance, which reflects the inclusiveness of the 1DCNN model for outliers. Simultaneously, the feasibility and robustness of the 1DCNN model in the application of near-infrared spectroscopy was verified, which has a certain application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
矿泉水发布了新的文献求助10
2秒前
认真的飞扬完成签到,获得积分10
3秒前
Double_N完成签到,获得积分10
4秒前
热水泡jio发布了新的文献求助10
5秒前
任伟超完成签到,获得积分10
6秒前
坚强的缘分完成签到,获得积分10
6秒前
平平平平完成签到 ,获得积分10
6秒前
JoaquinH发布了新的文献求助10
7秒前
hululu完成签到 ,获得积分10
8秒前
9秒前
芊芊完成签到 ,获得积分10
9秒前
silin完成签到,获得积分10
9秒前
OK完成签到,获得积分10
10秒前
azure完成签到,获得积分10
11秒前
12秒前
12秒前
多边形完成签到 ,获得积分10
12秒前
烫嘴普通话完成签到,获得积分10
14秒前
AteeqBaloch完成签到,获得积分10
15秒前
小吴同志发布了新的文献求助10
16秒前
蓝天碧海小西服完成签到,获得积分0
17秒前
8y24dp发布了新的文献求助10
17秒前
畅快的胡萝卜完成签到,获得积分10
17秒前
InfoNinja完成签到,获得积分0
20秒前
xin_you完成签到,获得积分10
22秒前
学术老6完成签到 ,获得积分10
24秒前
Man_proposes完成签到,获得积分10
24秒前
寻找土豆的灯完成签到 ,获得积分10
25秒前
乖乖完成签到,获得积分10
25秒前
CC完成签到 ,获得积分10
25秒前
欣慰的书本完成签到 ,获得积分10
26秒前
ymmmaomao23完成签到,获得积分10
26秒前
小胡完成签到,获得积分10
27秒前
佐为完成签到 ,获得积分10
28秒前
大东东发布了新的文献求助10
31秒前
31秒前
沙沙完成签到 ,获得积分10
32秒前
CC关注了科研通微信公众号
32秒前
33秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052675
求助须知:如何正确求助?哪些是违规求助? 2709926
关于积分的说明 7418483
捐赠科研通 2354527
什么是DOI,文献DOI怎么找? 1246159
科研通“疑难数据库(出版商)”最低求助积分说明 605951
版权声明 595921