A deep reinforcement learning-based intelligent fault diagnosis framework for rolling bearings under imbalanced datasets

强化学习 过度拟合 计算机科学 催交 人工智能 机器学习 断层(地质) 深度学习 理论(学习稳定性) 人工神经网络 工程类 系统工程 地震学 地质学
作者
Yonghua Li,Yipeng Wang,Xing Zhao,Zhe Chen
出处
期刊:Control Engineering Practice [Elsevier]
卷期号:145: 105845-105845
标识
DOI:10.1016/j.conengprac.2024.105845
摘要

Deep learning is a commonly employed technique for fault diagnosis; however, its effectiveness is contingent upon the presence of balanced data. In real-world industrial settings, the collected fault data from mechanical equipment often lacks balance with normal data, resulting in overfitting, reduced generalization, and diminished accuracy of the deep learning approach. Consequently, this study introduces a novel diagnostic framework, namely Deep Reinforcement Learning (DRL) based on Advantage Actor–Critic (A2C), which autonomously extracts profound and pivotal features from data samples, enabling precise decision-making. In this study, we employ the Synthetic Minority Over-sampling Technique (SMOTE) to create a reinforcement learning environment that facilitates balanced data support for model training. Additionally, we utilize the DenseNet network, enhanced by the multi-scale mixed attention mechanism module, as both the policy and value network for the A2C agent. This allows for the extraction of crucial features while retaining important information. Furthermore, multiple A2C agents are executed in parallel to carry out diagnostic tasks, thereby expediting convergence and ensuring stability. The proposed approach is then evaluated and analyzed using two bearing datasets, and its performance is compared to that of alternative methods. The experimental findings demonstrate that the proposed framework exhibits superior diagnostic accuracy and overall performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强怀绿发布了新的文献求助10
1秒前
子车茗应助纯真紫南采纳,获得10
2秒前
万能图书馆应助微笑的涛采纳,获得10
2秒前
2秒前
JUNJUN发布了新的文献求助10
4秒前
隐形曼青应助Snoopy采纳,获得10
5秒前
6秒前
8秒前
grewj6发布了新的文献求助10
9秒前
10秒前
12秒前
12秒前
12秒前
12秒前
科研通AI2S应助沂静采纳,获得10
13秒前
坚强怀绿完成签到,获得积分10
15秒前
PAIDAXXXX发布了新的文献求助30
16秒前
16秒前
ifanyz发布了新的文献求助10
17秒前
¥#¥-11发布了新的文献求助10
17秒前
19秒前
LeimingDai发布了新的文献求助10
19秒前
21秒前
kelly琳完成签到,获得积分20
21秒前
Akim应助ifanyz采纳,获得10
21秒前
22秒前
23秒前
23秒前
淮雨巷陌完成签到,获得积分10
23秒前
干净的井发布了新的文献求助10
24秒前
mochen完成签到,获得积分10
25秒前
25秒前
kelly琳发布了新的文献求助30
26秒前
kyrry完成签到,获得积分10
27秒前
27秒前
水博士完成签到,获得积分10
29秒前
香蕉觅云应助活爹采纳,获得10
29秒前
29秒前
kk发布了新的文献求助10
29秒前
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149519
求助须知:如何正确求助?哪些是违规求助? 2800571
关于积分的说明 7840676
捐赠科研通 2458112
什么是DOI,文献DOI怎么找? 1308279
科研通“疑难数据库(出版商)”最低求助积分说明 628471
版权声明 601706